Publications by authors named "Maria del Carmen Dominguez"

The quest for biocompatible drug-delivery devices that could be able to open new administration routes is at the frontier of biomedical research. In this contribution, porous polysaccharide-based microsponges based on crosslinked alginate polymers were developed and characterized by optical spectroscopy and nanoscopic microscopy techniques. We show that macropores with a size distribution ranging from 50 to 120 nm enabled efficient loading and delivery of a therapeutic peptide (CIGB814), presently under a phase 3 clinical trial for the treatment of rheumatoid arthritis.

View Article and Find Full Text PDF

Human heat-shock protein 60 (HSP60) is an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). Epitopes derived from HSP60 can trigger activation of regulatory T cells (Treg). CIGB-814 is an altered peptide ligand (APL) derived from HSP60.

View Article and Find Full Text PDF

Background: In areas of high exposure to grass pollen, allergic patients are frequently sensitized to profilin, and some experience severe profilin-mediated food-induced reactions. This specific population of patients is ideal to study the relationship between respiratory and food allergies.

Objective: We sought to determine the role of oral mucosal epithelial barrier integrity in profilin-mediated allergic reactions.

View Article and Find Full Text PDF

CIGB-814, originally named as E18-3 APL1 or APL1 in preclinical experiments, is a novel therapeutic peptide candidate for Rheumatoid Arthritis (RA). It is an altered peptide ligand containing a novel CD4+ T-cell epitope of human heat shock protein 60 (83-109, MW 2988.38g/mol) with a mutation (D→L) that increases its affinity for HLA-II type molecules associated to RA.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25(high)FoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25(high)FoxP3+ Tregs in peripheral blood mononuclear cells from RA patients.

View Article and Find Full Text PDF

Induction of tolerance to autoantigens in vivo is a complex process that involves several mechanisms such as the induction of regulatory T cells and changes in the cytokine and chemokine profiles. This approach represents an attractive alternative for treatment of autoimmune diseases. APL-1 is an altered peptide ligand derived from a novel CD4 + T cell epitope of human heat-shock protein of 60 kDa (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA).

View Article and Find Full Text PDF

Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases characterized by autoimmune arthritis of unknown cause with onset before age of 16 years. Methotrexate provides clinical benefits in JIA. For children who do not respond to methotrexate, treatment with anti-tumor necrosis factor (TNF)-α is an option.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic T-cell mediated autoimmune disease that affects primarily the joints. The induction of immune tolerance through antigen-specific therapies for the blockade of pathogenic CD4+ T cells constitutes a current focus of research. In this focus it is attempted to simultaneously activate multiple regulatory mechanisms, such as: apoptosis and regulatory T cells (Tregs).

View Article and Find Full Text PDF

Induction of immune tolerance as therapeutic approach for autoimmune diseases constitutes a current research focal point. In this sense, we aimed to evaluate an altered peptide ligand (APL) for induction of peripheral tolerance in patients with rheumatoid arthritis (RA). A novel T-cell epitope from human heat-shock protein 60 (Hsp60), an autoantigen involved in the pathogenesis of RA, was identified by bioinformatics tools and an APL was design starting from this epitope.

View Article and Find Full Text PDF