Publications by authors named "Maria da Graca Gama Melao"

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata.

View Article and Find Full Text PDF
Article Synopsis
  • ZnWO nanoparticles (ZnWO-NPs) are used in various applications like sensors, lasers, and batteries, but their effects on aquatic ecosystems remain unclear.
  • This study is the first to assess the toxicity of ZnWO-NPs on the green microalga Raphidocelis subcapitata, revealing growth inhibition and changes in photosynthesis at specific concentrations.
  • The findings indicate that high levels of ZnWO-NPs can disrupt biochemical processes in microalgae, which could have broader implications for aquatic food chains and ecosystem health.
View Article and Find Full Text PDF

Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities.

View Article and Find Full Text PDF

Increasing metal concentrations in aquatic environments are mainly due to anthropogenic actions, which is a matter of concern for the biodiversity of aquatic biota. It is known that metals coexist in environments, however environmental risk assessments do not usually take into account the effects of these mixtures. We aimed to test Zn and Al mixtures on the photosynthetic apparatus of a green microalga, for the first time, using PAM fluorometry.

View Article and Find Full Text PDF

Metals occur simultaneously in the environment, and therefore it is important to know their toxicity and mechanism of action when associated with another metal. Furthermore, anthropogenic actions increase their concentrations in the environment where they can interact and undergo transformations that can even increase their toxicity. This study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co), isolated and combined, on the microalgae Raphidocelis subcapitata.

View Article and Find Full Text PDF

Manganese (Mn), an essential metal in trace amounts, and chromium (Cr), a nonessential metal to algae, are often found in effluent discharges and may co-occur in contaminated aquatic environments. Therefore, we investigated the effects of Mn and Cr, and their mixtures, on a freshwater Chlorophyceae, Raphidocelis subcapitata, using a multiple endpoint approach. Regarding the single exposure of metals, Mn was 4 times more toxic (median inhibitory concentration at 72 h [IC50 ] = 4.

View Article and Find Full Text PDF

Silver-based materials have microbicidal action, photocatalytic activity and electronic properties. The increase in manufacturing and consumption of these compounds, given their wide functionality and application, is a source of contamination to freshwater ecosystems and causes toxicity to aquatic biota. Therefore, for the first time, we evaluated the toxicity of the silver tungstate (α-AgWO), in different morphologies (cube and rod), for the microalga Raphidocelis subcapitata.

View Article and Find Full Text PDF

Despite the co-occurrence of metals in aquatic environments, their joint effects are generally not considered during risk assessments. Data on the combined effects of zinc (Zn) and aluminum (Al) on aquatic animals are extremely scarce in the literature, although these metals are commonly used in domestic and industrial activities. In the present study, we investigated the effects of mixtures of Zn and Al on the cladoceran Ceriodaphnia silvestrii.

View Article and Find Full Text PDF

Metals may cause damage to the biota of contaminated environments. Moreover, using multiple endpoints in ecotoxicological studies is useful to better elucidate the mechanisms of toxicity of these compounds. Therefore, this study aimed to evaluate the effects of cadmium (Cd) and cobalt (Co) on growth, biochemical and photosynthetic parameters of the microalgae Raphidocelis subcapitata, through quantification of lipid classes composition, chlorophyll a (Chl a) content, maximum (Φ) and effective (Φ') quantum yields and efficiency of the oxygen-evolving complex (OEC).

View Article and Find Full Text PDF

The occurrence of pesticides and their mixtures in the environment can alter the ecological relationships between aquatic food chains. Since fipronil and 2,4-dichlorophenoxyacetic acid (2,4-D) are commonly found together in Brazilian water bodies, the present study aimed to investigate through an integrative approach the toxicity mechanisms of environmentally relevant concentrations of pesticides Regent® 800 WG (active ingredient - a.i.

View Article and Find Full Text PDF

A large number of metals is present in aquatic ecosystems, often occurring simultaneously, however, the isolated toxicity of them are better well known than their mixtures. Based on that, for the first time we aimed to test the effects of zinc (Zn) and aluminum (Al) mixtures to the microalgae Raphidocelis subcapitata. Regarding isolated toxicity, the 96 h IC of Zn and Al based on specific growth rates occurred, respectively, at 0.

View Article and Find Full Text PDF

Nanoparticles (NPs) production is increasing worldwide. These products are likely to end up in aquatic environments. However, few studies evaluated the chronic toxicity of iron-based NPs (Fe-NPs) to cladocerans and their potential ecotoxicological hazards.

View Article and Find Full Text PDF

Microalgae have been widely used in ecotoxicological studies in order to evaluate the impacts of heavy metals in aquatic ecosystems. However, there are few studies that analyze the effects of metals in an integrative way on photosynthetic apparatus of freshwater microalgae in the generation of reactive oxygen species (ROS) and biochemical composition. Therefore, this study aimed to assess cadmium (Cd) and lead (Pb) toxicity using synchronously physiological and biochemical endpoints, specially detecting lipidic classes for the very first time during Cd and Pb-exposure to Raphidocelis subcapitata.

View Article and Find Full Text PDF

Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C.

View Article and Find Full Text PDF

The present study aimed to investigate the response of several life history parameters (body length and age of primipara, duration of embryonic development, maximum body length, reproduction and survival) of the zooplankton Ceriodaphnia silvestrii while exposed to copper contaminated algae Pseudokirchneriella subcapitata. In order to evaluate chronic exposure on the animal's life history, long-term experimental design was used. Cladocerans were fed with a dietary copper concentration ranging from 3 to 68 fg Cu cell(-1).

View Article and Find Full Text PDF

Changes in life cycle parameters (survival, growth, reproduction) and feeding rate of the tropical cladoceran Ceriodaphnia silvestrii as affected by Cu contaminated algae Pseudokirchneriella subcapitata were investigated. The dietary copper exposure ranged from 3 x 10(-15) to 68 x 10(-15) g Cu algal cell(-1). Low waterborne copper exposure (around 10(-10) mol l(-1) free Cu2+ ions) was kept in the experiments.

View Article and Find Full Text PDF

In a daily migration, the aquatic larvae of Chaoborus flavicans (a phantom midge) alternate oxygen-saturated and anoxic lake strata. To investigate this cycle, larvae were collected at a natural environment, and acetate, propionate, pyruvate, lactate, glycerol, phosphate, maleate, succinate, glucose and citrate were determined. Each larva was homogenized with 200 microL water and deproteinized with a spin-filter; 50 microL aliquots were mixed with 50 microL of a buffer containing 80 mM propylamine, 20 mM HCl and 0.

View Article and Find Full Text PDF