The poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFA gentle, rapid method has been developed to introduce a polyacrylic acid (PAA) polymer coating on the surface of gadonanotubes (GNTs) which significantly increases their dispersibility in water without the need of a surfactant. As a result, the polymer, with its many carboxylic acid groups, coats the surface of the GNTs to form a new GNT-polymer hybrid material (PAA-GNT) which can be highly dispersed in water (ca. 20 mg·mL) at physiological pH.
View Article and Find Full Text PDFThere is an ever increasing interest in developing new stem cell therapies. However, imaging and tracking stem cells in vivo after transplantation remains a serious challenge. In this work, we report new, functionalized and high-performance Gd(3+)-ion-containing ultra-short carbon nanotube (US-tube) MRI contrast agent (CA) materials which are highly-water-dispersible (ca.
View Article and Find Full Text PDFCirc Res
October 2014
Rationale: Bone marrow (BM) cell therapy for ischemic heart disease (IHD) has shown mixed results. Before the full potency of BM cell therapy can be realized, it is essential to understand the BM niche after acute myocardial infarction (AMI).
Objective: To study the BM composition in patients with IHD and severe left ventricular (LV) dysfunction.
Background: The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host disease, diabetes, ischemic cardiomyopathy and Crohn's disease, has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells must be cost-effective, safe and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures and require prolonged culture times.
View Article and Find Full Text PDFThe encapsulation of bismuth as BiOCl/BiO within ultra-short (ca. 50 nm) single-walled carbon nanocapsules (US-tubes) has been achieved. The Bi@US-tubes have been characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy.
View Article and Find Full Text PDFIn this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu).
View Article and Find Full Text PDFRationale: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease of desmosome proteins characterized by fibroadipogenesis in the myocardium. We have implicated signaling properties of junction protein plakoglobin (PG) in the pathogenesis of ARVC.
Objective: To delineate the pathogenic role of PG in adipogenesis in ARVC.
A key issue regarding the use of stem cells in cardiovascular regenerative medicine is their retention in target tissues. Here, we have generated and assessed a bispecific antibody heterodimer designed to improve the retention of bone-marrow-derived multipotent stromal cells (BMMSC) in cardiac tissue damaged by myocardial infarction. The heterodimer comprises an anti-human CD90 monoclonal antibody (mAb) (clone 5E10) and an anti-myosin light chain 1 (MLC1) mAb (clone MLM508) covalently cross-linked by a bis-arylhydrazone.
View Article and Find Full Text PDFStem cell-based therapies have emerged as a promising approach in regenerative medicine. In the development of such therapies, the demand for imaging technologies that permit the noninvasive monitoring of transplanted stem cells in vivo is growing. Here, we report the performance of gadolinium-containing carbon nanocapsules, or gadonanotubes (GNTs), as a new T₁-weighted magnetic resonance imaging (MRI) intracellular labeling agent for pig bone marrow-derived mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFBackground And Objective: Left ventricular electromechanical mapping (EMM) determines myocardial viability on the basis of endocardial electrograms. The aim of the present study was to validate EMM in differentiating infarcted myocardium from viable myocardium by histopathological analysis.
Methods: Sixty days after implanting an ameroid constrictor over the left circumflex artery to create chronic ischemia in 19 pigs, EMM was performed to construct unipolar voltage (UPV), bipolar voltage (BPV) and linear local shortening (LLS) maps.