Publications by authors named "Maria Zielecka"

This review discusses the key factors influencing the exceptional thermal resistance and surface properties of silicone-containing composites. Silicone polymers, known for their excellent chemical and physical properties, are widely used in a number of innovative products. In order to make silicone composites suitable for innovative applications, it is essential to ensure that they have both very good thermal resistance and superhydrophobic properties.

View Article and Find Full Text PDF

Continuous technological progress places significant demands on the materials used in increasingly modern devices. An important parameter is often the long-term thermal resistance of the material. The use of heat-resistant polymer materials worked well in technologically advanced products.

View Article and Find Full Text PDF

Extinguishing agents are a very important tool in the field of security, both in terms of private and social aspects. Depending on the type of burning substance and place of fire, appropriately prepared and developed solutions should be used. We can distinguish, among others, materials, powders or foaming agents.

View Article and Find Full Text PDF

Nanotechnology is used, to an increasing extent, in practically every aspect of the economy and society. One area where nanotechnology is constantly advancing is fire protection. Nanostructures are found in elements used in direct protection, such as in protective clothing, filters, and helmets.

View Article and Find Full Text PDF

Chemical, biological, radiological, or nuclear (CBRN) contamination of the environment is a significant threat to human health and life as well as environmental safety. It is then necessary to take actions aimed at minimizing and eliminating the threat. Depending on the type of contamination, various methods are used, including sorption, biodegradation, separation, or ion exchange processes in which membranes play an important role.

View Article and Find Full Text PDF

Air quality is one of the most important problems of the modern world, as it determines human health and changes occurring in other elements of nature, including climate change. For this reason, actions are taken to reduce the amount of harmful substances in the air. One such action is the use of building materials with special properties achieved by the application of self-cleaning coatings and photocatalytic additives.

View Article and Find Full Text PDF

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane's intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed.

View Article and Find Full Text PDF

Silicone resins are widely applied as coating materials due to their unique properties, especially those related to very good heat resistance. The most important effect on the long-term heat resistance of the coating is connected with the type of resin. Moreover, this structure is stabilized by a chemical reaction between the hydroxyl groups from the organoclay and the silicone resin.

View Article and Find Full Text PDF

Background: 2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1.

View Article and Find Full Text PDF