Publications by authors named "Maria Zeniou-Meyer"

Article Synopsis
  • Fusogenic cone-shaped lipids like phosphatidic acid (PA) and SNARE proteins are essential for membrane fusion during exocytosis.
  • Phospholipase D (PLD), primarily activated by ribosomal S6 kinase 2 (RSK2), is responsible for synthesizing PA in neuroendocrine cells.
  • Depletion of RSK2 significantly hinders PA production and inhibits hormone release, but using phosphomimetic mutants of PLD1 can restore secretion, emphasizing RSK2's role in activating PLD1 for exocytosis.
View Article and Find Full Text PDF

Exocytosis of neurotransmitters and hormones occurs through the fusion of secretory vesicles with the plasma membrane. This highly regulated process involves key proteins, such as SNAREs, and specific lipids at the site of membrane fusion. Phospholipase D (PLD) has recently emerged as a promoter of membrane fusion in various exocytotic events potentially by providing fusogenic cone-shaped phosphatidic acid.

View Article and Find Full Text PDF

Substantial efforts have recently been made to demonstrate the importance of lipids and lipid-modifying enzymes in various membrane trafficking processes, including calcium-regulated exocytosis of hormones and neurotransmitters. Among bioactive lipids, phosphatidic acid (PA) is an attractive candidate to promote membrane fusion through its ability to change membrane topology. To date, however, the biosynthetic pathway, the dynamic location, and actual function of PA in secretory cells remain unknown.

View Article and Find Full Text PDF

Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane.

View Article and Find Full Text PDF

We recently described that the tumor suppressor factor Scribble anchors the PIX exchange factor for Rac/Cdc42 and the ARF-GAP GIT proteins at the plasma membrane. Because it has been postulated that the GIT-PIX proteins dimerize and tightly self-assemble to form a high molecular weight complex, this nexus may be capable of linking together important signalling molecules to control cytosqueleton polymerization and membrane dynamics. To date, most studies that have tempted to unravel the function of these proteins have found their implication in a great variety of cellular functions (receptor recycling, endo-exocytosis, cell migration, synapse formation.

View Article and Find Full Text PDF

Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates.

View Article and Find Full Text PDF