Arctic fjords ecosystems are highly dynamic, with organisms exposed to various natural stressors along with productivity clines driven by advection of water masses from shelves. The benthic response to these environmental clines has been extensively studied using traditional, morphology-based approaches mostly focusing on macroinvertebrates. In this study we analyse the effects of glacially mediated disturbance on the biodiversity of benthic macrofauna and meiobenthos (meiofauna and Foraminifera) in a Svalbard fjord by comparing morphology and eDNA metabarcoding.
View Article and Find Full Text PDFAlthough pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.
View Article and Find Full Text PDFOver thirty species of littoral marine Gammaridea occur along the coasts of the North Atlantic. From one to several species can coexist in a single region. There is an evident, inverse relationship between egg incubation time and temperature (from 14 to >120 days) and consequent trends in the size of the animals on reaching maturity (from 5 mm in warmer waters to 30 mm in the coldest ones) and in lifespan (from <6 months to >5 years).
View Article and Find Full Text PDFGlobal warming is expected to cause reductions in organism body size, a fundamental biological unit important in determining biological processes. Possible effects of increasing temperature on biomass size spectra in coastal benthic communities were investigated. We hypothesized higher proportions of smaller size classes in warmer conditions.
View Article and Find Full Text PDFBody size is one of the most important biological characters, as it defines many aspects of organismal functioning at the individual and community level. As body size controls many ecological aspects of species, it is often used as a proxy for the status of the ecosystem. So far no consistent mechanism driving size shift has been proposed.
View Article and Find Full Text PDFIn this study temporal changes of Pb, Zn, Cd and Cu concentrations were studied in 19 dated sediment cores collected from Svalbard fjords and the Barents Sea. The main aim was to study spatial and historical variations in heavy metal concentrations, deposition rates and sources in the context of different metal transport pathways. Metal concentrations ranged from 5.
View Article and Find Full Text PDFThe current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2015
This study presents the first report on bacterial communities in the sediments of eelgrass (Zostera marina) meadows in the shallow southern Baltic Sea (Puck Bay). Total bacterial cell numbers (TBNs) and bacteria biomass (BBM) assessed with the use of epifluorescence microscope and Norland's formula were compared between bare and vegetated sediments at two localities and in two sampling summer months. Significantly higher TBNs and BBM (PERMANOVA tests, P < 0.
View Article and Find Full Text PDFSeagrasses and associated macrophytes are important components of coastal systems as ecosystem engineers, habitat formers, and providers of food and shelter for other organisms. The positive impacts of seagrass vegetation on zoobenthic abundance and diversity (as compared to bare sands) are well documented, but only in surveys performed in summer, which is the season of maximum canopy development. Here we present the results of the first study of the relationship between the seasonal variability of seagrass vegetation and persistence and magnitude of contrasts in faunal communities between vegetated and bare sediments.
View Article and Find Full Text PDF