Publications by authors named "Maria Webb"

Background: (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. We and others hypothesize that diminished activity-dependent neural signaling is a common molecular pathway dysregulated in ASD caused by diverse genetic mutations. Brain-derived neurotrophic factor (BDNF) is a key growth factor mediating activity-dependent neural signaling in the brain.

View Article and Find Full Text PDF

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships (SAR) of a novel series of benzodiazepinedione-based inhibitors of Clostridium difficile toxin B (TcdB) are described. Compounds demonstrating low nanomolar affinity for TcdB, and which possess improved stability in mouse plasma vs. earlier compounds from this series, have been identified.

View Article and Find Full Text PDF

Background And Objective: To determine whether family medicine program directors (PDs) experienced moral distress due to obstacles to Hepatitis C virus (HCV) treatment, and to explore whether they found those obstacles to be unethical.

Design: An omnibus survey by the Council of Academic Family Medicine's Educational Research Alliance was administered to 452 and completed by 273 US-based PDs. The survey gauged attitudes and opinions regarding ethical dilemmas in patient access to HCV treatment.

View Article and Find Full Text PDF

infection (CDI) is the leading cause of hospital-acquired infectious diarrhea, with significant morbidity, mortality, and associated health care costs. The major risk factor for CDI is antimicrobial therapy, which disrupts the normal gut microbiota and allows to flourish. Treatment of CDI with antimicrobials is generally effective in the short term, but recurrent infections are frequent and problematic, indicating that improved treatment options are necessary.

View Article and Find Full Text PDF

The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 1-5 the most potent of which was compound 1 (IC = 0.

View Article and Find Full Text PDF

Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.

View Article and Find Full Text PDF
Article Synopsis
  • Candida albicans and similar fungi can cause serious infections, especially in people with weak immune systems.
  • Azole drugs are commonly used to treat these infections, but some fungal cells adapt to these drugs by changing certain genes to survive.
  • Researchers have found new compounds that can target a protein called Upc2, which helps the fungi respond to drug treatment, potentially leading to new antifungal medicines.
View Article and Find Full Text PDF

We have shown previously that different chemical classes of small-molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor. Although an intracellular binding site for diarylurea CXCR2 antagonists, such as N-(2-bromophenyl)-N'-(7-cyano-1H-benzotriazol-4-yl)urea (SB265610), and thiazolopyrimidine compounds was recently mapped by mutagenesis studies, we now report on an imidazolylpyrimidine antagonist binding pocket in the transmembrane domain of CXCR2. Using different CXCR2 orthologs, chimeric proteins, site-directed mutagenesis, and in silico modeling, we have elucidated the binding mode of this antagonist.

View Article and Find Full Text PDF

Background And Purpose: The chemokine receptor CXCR3 directs migration of T-cells in response to the ligands CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC. Both ligands and receptors are implicated in the pathogenesis of inflammatory disorders, including atherosclerosis and rheumatoid arthritis. Here, we describe the molecular mechanism by which two synthetic small molecule agonists activate CXCR3.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.

View Article and Find Full Text PDF

Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) (V(3)) antagonists are described. 2-(4-Oxo-2-aryl-quinazolin-3(4H)-yl)acetamides have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and oxytocin (OT). Optimised compound 12j demonstrates a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction.

View Article and Find Full Text PDF

A novel series of quinolinone-based adenosine A(2B) receptor antagonists was identified via high throughput screening of an encoded combinatorial compound collection. Synthesis and assay of a series of analogs highlighted essential structural features of the initial hit. Optimization resulted in an A(2B) antagonist (2i) which exhibited potent activity in a cAMP accumulation assay (5.

View Article and Find Full Text PDF

The discovery, synthesis and preliminary structure-activity relationships (SARs) of a novel class of CB1 antagonists is described. Initial optimization of benzimidazole-based screening hit 4 led to the identification of 'inverted' indole-based lead compound 18c with improved properties versus compound 4 including reduced AlogP, improved microsomal stability and improved aqueous solubility. Compound 18c demonstrates in vivo CB1 antagonist efficacy (CB1 agonist induced hypothermia model) and is orally bioavailable in rat.

View Article and Find Full Text PDF

The discovery, synthesis, and preliminary structure-activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS technology, had good activity in a V3 binding assay (IC50=0.20 microM), but less than desirable physicochemical properties.

View Article and Find Full Text PDF

A novel series of pyrrolidine heterocycles was prepared and found to show potent inhibitory activity of CCR1 binding and CCL3 mediated chemotaxis of a CCR1-expressing cell line. A potent, optimized triazole lead from this series was found to have acceptable pharmacokinetics and microsomal stability in rat and is suitable for further optimization and development.

View Article and Find Full Text PDF

Objective: All gamma-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2.

Methods: JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3-dependent (interleukin-2 [IL-2]) and -independent (IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation.

View Article and Find Full Text PDF

A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-gamma (INF-gamma) production.

View Article and Find Full Text PDF

The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity.

View Article and Find Full Text PDF

Monocyte infiltration is implicated in a variety of diseases including multiple myeloma, rheumatoid arthritis, and multiple sclerosis. C-C chemokine receptor 1 (CCR1) is a chemokine receptor that upon stimulation, particularly by macrophage inflammatory protein 1alpha (MIP-1alpha) and regulated on normal T-cell expressed and secreted (RANTES), mediates monocyte trafficking to sites of inflammation. High throughput screening of our combinatorial collection identified a novel, moderately potent CCR1 antagonist 3.

View Article and Find Full Text PDF

The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the alpha(v)-integrins alpha(v)beta(3) and alpha(v)beta(5) is described. High-throughput screening of an extensive series of ECLiPStrade mark compound libraries led to the identification of compound 1 as a dual inhibitor of the alpha(v)-integrins alpha(v)beta(3) and alpha(v)beta(5). Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the alpha(v)beta(3) and alpha(v)beta(5) integrins.

View Article and Find Full Text PDF

The discovery and synthesis of a series of (dimethoxyphenoxy)alkylamino acetamides as orexin-2 receptor antagonists from a small-molecule combinatorial library using a high-throughput calcium mobilization functional assay (HEK293-human OX2-R cell line) is described. Active compounds show a good correlation between high-throughput single concentration screening data and measured IC(50)s. Specific examples exhibit IC(50) values of approximately 20 nM using human orexin A as the peptide agonist for the orexin-2 receptor.

View Article and Find Full Text PDF