The design of RNA sequences with desired structural properties presents a challenging computational problem with promising applications in biotechnology and biomedicine. Most regulatory RNAs function by forming RNA-RNA interactions, e.g.
View Article and Find Full Text PDFtRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered.
View Article and Find Full Text PDFThe structure of an RNA, and even more so its interactions with other RNAs, provide valuable information about its function. Secondary structure-based tools for RNA-RNA interaction predictions provide a quick way to identify possible interaction targets and structures. However, these tools ignore the effect of steric hindrance on the tertiary (3D) structure level, and do not consider whether a suitable folding pathway exists to form the interaction.
View Article and Find Full Text PDFMost of the functional RNA elements located within large transcripts are local. Local folding therefore serves a practically useful approximation to global structure prediction. Due to the sensitivity of RNA secondary structure prediction to the exact definition of sequence ends, accuracy can be increased by averaging local structure predictions over multiple, overlapping sequence windows.
View Article and Find Full Text PDFNumerous viruses utilize essential long-range RNA-RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA-RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA-RNA interacting site among JEV isolates and numerous related viruses.
View Article and Find Full Text PDFThe telomerase RNA in yeasts is large, usually >1000 nt, and contains functional elements that have been extensively studied experimentally in several disparate species. Nevertheless, they are very difficult to detect by homology-based methods and so far have escaped annotation in the majority of the genomes of Saccharomycotina. This is a consequence of sequences that evolve rapidly at nucleotide level, are subject to large variations in size, and are highly plastic with respect to their secondary structures.
View Article and Find Full Text PDFStark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers.
View Article and Find Full Text PDF