Publications by authors named "Maria Voutilainen"

Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland.

View Article and Find Full Text PDF

Mammary gland development begins with the appearance of epithelial placodes that invaginate, sprout, and branch to form small arborized trees by birth. The second phase of ductal growth and branching is driven by the highly invasive structures called terminal end buds (TEBs) that form at ductal tips at the onset of puberty. Ectodysplasin (Eda), a tumor necrosis factor-like ligand, is essential for the development of skin appendages including the breast.

View Article and Find Full Text PDF

An increased breast cancer risk during adulthood has been linked to estrogen exposure during fetal life. However, the impossibility of removing estrogens from the feto-maternal unit has hindered the testing of estrogen's direct effect on mammary gland organogenesis. To overcome this limitation, we developed an ex vivo culture method of the mammary gland where the direct action of estrogens can be tested during embryonic days (E)14 to 19.

View Article and Find Full Text PDF

Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages.

View Article and Find Full Text PDF

The explant culture techniques of embryonic tissues allow continuous monitoring of organ growth and morphogenesis ex vivo. The effect of growth factors and other soluble molecules can be examined by applying them to the culture medium. Relatively few studies have reported application of tissue culture techniques to analysis of embryonic mammary glands.

View Article and Find Full Text PDF

The ectodysplasin (Eda) signaling pathway consists of a TNF-like ligand Eda, its receptor Edar, and an adaptor protein Edaradd and its activation leads to NF-κB mediated transcription. In humans, mutations in the EDA pathway genes cause hypohidrotic ectodermal dysplasia, a disorder characterized by defective formation of hair follicles, teeth, and several exocrine glands including the breast. Embryonic mammary gland development proceeds via placode, bud, bulb and sprout stages before the onset of branching morphogenesis.

View Article and Find Full Text PDF

Ductal growth of the mammary gland occurs in two distinct stages. The first round of branching morphogenesis occurs during embryogenesis, and the second round commences at the onset of puberty. Currently, relatively little is known about the genetic networks that control the initial phases of ductal expansion, which, unlike pubertal development, proceeds independent of hormonal input in female mice.

View Article and Find Full Text PDF

One of the fascinating aspects of the history of life is the apparent increase in morphological complexity through time, a well known example being mammalian cheek tooth evolution. In contrast, experimental studies of development more readily show a decrease in complexity, again well exemplified by mammalian teeth, in which tooth crown features called cusps are frequently lost in mutant and transgenic mice. Here we report that mouse tooth complexity can be increased substantially by adjusting multiple signalling pathways simultaneously.

View Article and Find Full Text PDF