Human induced pluripotent stem cells (hiPSCs) are emerging as a tool for understanding human brain development at cellular, molecular, and genomic levels. Here we show that hiPSCs grown in suspension in the presence of rostral neuralizing factors can generate 3D structures containing polarized radial glia, intermediate progenitors, and a spectrum of layer-specific cortical neurons reminiscent of their organization in vivo. The hiPSC-derived multilayered structures express a gene expression profile typical of the embryonic telencephalon but not that of other CNS regions.
View Article and Find Full Text PDFIn EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins).
View Article and Find Full Text PDFThe endogenous neurotransmitter noradrenaline (NA) is known to exert potent anti-inflammatory effects in glial cells, as well as provide neuroprotection against excitatory and inflammatory stimuli. These properties raise the possibility that increasing levels of NA in the central nervous system (CNS) could provide benefit in neurological diseases and conditions containing an inflammatory component. In the current study, we tested this possibility by examining the consequences of selectively modulating CNS NA levels on the development of clinical signs in experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDF