Publications by authors named "Maria Vittoria Barbarossa"

Diagnostic testing followed by isolation of identified cases with subsequent tracing and quarantine of close contacts-often referred to as test-trace-isolate-and-quarantine (TTIQ) strategy-is one of the cornerstone measures of infectious disease control. The COVID-19 pandemic has highlighted that an appropriate response to outbreaks of infectious diseases requires a firm understanding of the effectiveness of such containment strategies. To this end, mathematical models provide a promising tool.

View Article and Find Full Text PDF

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

View Article and Find Full Text PDF

The first attempt to control and mitigate an epidemic outbreak caused by a previously unknown virus occurs primarily via non-pharmaceutical interventions (NPIs). In case of the SARS-CoV-2 virus, which since the early days of 2020 caused the COVID-19 pandemic, NPIs aimed at reducing transmission-enabling contacts between individuals. The effectiveness of contact reduction measures directly correlates with the number of individuals adhering to such measures.

View Article and Find Full Text PDF

The COVID-19 pandemic forced authorities worldwide to implement moderate to severe restrictions in order to slow down or suppress the spread of the disease. It has been observed in several countries that a significant number of people fled a city or a region just before strict lockdown measures were implemented. This behavior carries the risk of seeding a large number of infections all at once in regions with otherwise small number of cases.

View Article and Find Full Text PDF

Natural killer (NK) cells mediate innate host defense against microbial infection and cancer. Hypoxia and low glucose are characteristic for these tissue lesions but do not affect early interferon (IFN) γ and CC chemokine release by interleukin 15 (IL-15) primed human NK cells in vitro. Hypoxia inducible factor 1α (HIF-1α) mediates cellular adaption to hypoxia.

View Article and Find Full Text PDF

With the rapid increase of reported COVID-19 cases, German policymakers announced a 4-week "shutdown light" starting on November 2, 2020. Applying mathematical models, possible scenarios for the evolution of the outbreak in Germany are simulated. The results indicate that independent of the effectiveness of the current restrictive measures they might not be sufficient to mitigate the outbreak.

View Article and Find Full Text PDF

The novel coronavirus (SARS-CoV-2), identified in China at the end of December 2019 and causing the disease COVID-19, has meanwhile led to outbreaks all over the globe with about 2.2 million confirmed cases and more than 150,000 deaths as of April 17, 2020. In this work, mathematical models are used to reproduce data of the early evolution of the COVID-19 outbreak in Germany, taking into account the effect of actual and hypothetical non-pharmaceutical interventions.

View Article and Find Full Text PDF

are human ectoparasites which cause infestations, mostly in children, worldwide. Understanding the life cycle of head lice is an important step in knowing how to treat lice infestations, as the parasite behavior depends considerably on its age and gender. In this work we propose a mathematical model for head lice population dynamics in hosts who could be or not quarantined and treated.

View Article and Find Full Text PDF

In attempting to predict the further course of the novel coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2, mathematical models of different types are frequently employed and calibrated to reported case numbers. Among the major challenges in interpreting these data is the uncertainty about the amount of undetected infections, or conversely: the detection ratio. As a result, some models make assumptions about the percentage of detected cases among total infections while others completely neglect undetected cases.

View Article and Find Full Text PDF

Natural killer (NK) cells belong to the first line of host defense against infection and cancer. Cytokines, including interleukin-15 (IL-15), critically regulate NK cell activity, resulting in recognition and direct killing of transformed and infected target cells. NK cells have to adapt and respond in inflamed and often hypoxic areas.

View Article and Find Full Text PDF

The 2014 Ebola Virus Disease (EVD) outbreak in West Africa was the largest and longest ever reported since the first identification of this disease. We propose a compartmental model for EVD dynamics, including virus transmission in the community, at hospitals, and at funerals. Using time-dependent parameters, we incorporate the increasing intensity of intervention efforts.

View Article and Find Full Text PDF

In this interdisciplinary approach, the dynamics of production and degradation of the quorum sensing signal 3-oxo-decanoylhomoserine lactone were studied for continuous cultures of Pseudomonas putida IsoF. The signal concentrations were quantified over time by use of monoclonal antibodies and ELISA. The results were verified by use of ultra-high-performance liquid chromatography.

View Article and Find Full Text PDF

In this work we present a mathematical model for tumor growth based on the biology of the cell cycle. For an appropriate description of the effects of phase-specific drugs, it is necessary to look at the cell cycle and its phases. Our model reproduces the dynamics of three different tumor cell populations: quiescent cells, cells during the interphase and mitotic cells.

View Article and Find Full Text PDF