Background: Lenvatinib, a tyrosine kinase inhibitor (TKI) approved for the treatment of progressive and radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC), is associated with significant adverse effects that can be partially mitigated through the development of novel drug formulations. The utilization of nanoparticles presents a viable option, as it allows for targeted drug delivery, reducing certain side effects and enhancing the overall quality of life for patients. This study aimed to produce and assess, both in vitro and in vivo, the cytotoxicity, biodistribution, and therapeutic efficacy of lenvatinib-loaded PLGA nanoparticles (NPs), both with and without decoration using antibody conjugation (cetuximab), as a novel therapeutic approach for managing aggressive thyroid tumors.
View Article and Find Full Text PDFObjective: Catecholaminergic signaling has been a target for therapy in different type of cancers. In this work, we characterized the ADRβ2, DRD1 and DRD2 expression in healthy tissue and endometrial tumors to evaluate their prognostic significance in endometrial cancer (EC), unraveling their possible application as an antitumor therapy.
Methods: 109 EC patients were included.
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture is directed by self-assembly of the "major vault protein" (MVP), the main component of this nanoparticle.
View Article and Find Full Text PDFAdvanced endometrial cancer (EC) lacks therapy, thus, there is a need for novel treatment targets. CXCR4 overexpression is associated with a poor prognosis in several cancers, whereas its inhibition prevents metastases. We assessed CXCR4 expression in EC in women by using IHC.
View Article and Find Full Text PDFCancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects.
View Article and Find Full Text PDFColorectal cancer (CRC) remains the third cause of cancer-related mortality in Western countries, metastases are the main cause of death. CRC treatment remains limited by systemic toxicity and chemotherapy resistance. Therefore, nanoparticle-mediated delivery of cytotoxic agents selectively to cancer cells represents an efficient strategy to increase the therapeutic index and overcome drug resistance.
View Article and Find Full Text PDFWomens Health (Lond)
April 2022
Endometrial carcinoma is the most common gynecological malignancy in Western countries and is expected to increase in the following years because of the high index of obesity in the population. Recently, neural signaling has been recognized as part of the tumor microenvironment, playing an active role in tumor progression and invasion of different solid tumor types. The uterus stands out for the physiological plasticity of its peripheral nerves due to cyclic remodeling brought on by estrogen and progesterone hormones throughout the reproductive cycle.
View Article and Find Full Text PDFFluorescent dye labeling is a common strategy to analyze the fate of administered nanoparticles in living organisms. However, to which extent the labeling processes can alter the original nanoparticle biodistribution has been so far neglected. In this work, two widely used fluorescent dye molecules, namely, ATTO488 (ATTO) and Sulfo-Cy5 (S-Cy5), have been covalently attached to a well-characterized CXCR4-targeted self-assembling protein nanoparticle (known as T22-GFP-H6).
View Article and Find Full Text PDFFunctional amyloids produced in bacteria as nanoscale inclusion bodies are intriguing but poorly explored protein materials with wide therapeutic potential. Since they release functional polypeptides under physiological conditions, these materials can be potentially tailored as mimetic of secretory granules for slow systemic delivery of smart protein drugs. To explore this possibility, bacterial inclusion bodies formed by a self-assembled, tumor-targeted Pseudomonas exotoxin (PE24) are administered subcutaneously in mouse models of human metastatic colorectal cancer, for sustained secretion of tumor-targeted therapeutic nanoparticles.
View Article and Find Full Text PDFBy the appropriate selection of functional peptides and proper accommodation sites, we have generated a set of multifunctional proteins that combine selectivity for CXCR4 cell binding and relevant endosomal escape capabilities linked to the viral peptide HA2. In particular, the construct T22-GFP-HA2-H6 forms nanoparticles that upon administration in mouse models of human, CXCR4 colorectal cancer, accumulates in primary tumor at levels significantly higher than the parental T22-GFP-H6 HA2-lacking version. The in vivo application of a CXCR4 antagonist has confirmed the prevalence of the CXCR4 tumor tissue selectivity over unspecific cell penetration, upon systemic administration of the material.
View Article and Find Full Text PDFOne-third of diffuse large B-cell lymphoma patients are refractory to initial treatment or relapse after rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy. In these patients, CXCR4 overexpression (CXCR4) associates with lower overall and disease-free survival. Nanomedicine pursues active targeting to selectively deliver antitumor agents to cancer cells; a novel approach that promises to revolutionize therapy by dramatically increasing drug concentration in target tumor cells.
View Article and Find Full Text PDFOligonucleotide-protein conjugates have important applications in biomedicine. Simple and efficient methods are described for the preparation of these conjugates. Specifically, we describe a new method in which a bifunctional linker is attached to thiol-oligonucleotide to generate a reactive intermediate that is used to link to the protein.
View Article and Find Full Text PDFProteins are organic macromolecules essential in life but exploited, mainly in recombinant versions, as drugs or vaccine components, among other uses in industry or biomedicine. In oncology, individual proteins or supramolecular complexes have been tailored as small molecular weight drug carriers for passive or active tumor cell-targeted delivery, through the de novo design of appropriate drug stabilizing vehicles, or by generating constructs with different extents of mimesis of natural cell-targeted entities, such as viruses. In most of these approaches, a convenient nanoscale size is achieved through the oligomeric organization of the protein component in the drug conjugate.
View Article and Find Full Text PDFBackground: We aimed at identifying molecular markers predictive of clinical outcome in patients with head and neck cancer based on the expression profile of cells showing epithelial-like (EL) or mesenchymal-like (ML) phenotypes.
Materials And Methods: We analyzed the association between EL and ML cells and migration, drug resistance, or tumor growth. The differential gene expression profile between cell types was used to build a model to stratify patients according to survival.
Background: Serpin Family E Member 1 (SerpinE1) overexpression associates with poor clinical outcome in head and neck squamous cell carcinoma (HNSCC) patients. This study analyzed the role of serpinE1 in HNSCC dissemination.
Methods: We studied the phenotypic characteristics and dissemination of HNSCC cells overexpressing serpinE1 using an orthotopic model and the association between serpinE1 overexpression and clinicopathological variables in patients included in The Cancer Genome Atlas database.
In recent years, several attempts have been made to identify novel prognostic markers in patients with intermediate-risk acute myeloid leukemia (IR-AML), to implement risk-adapted strategies. The non-receptor tyrosine kinases are proteins involved in regulation of cell growth, adhesion, migration and apoptosis. They associate with metastatic dissemination in solid tumors and poor prognosis.
View Article and Find Full Text PDFSelective elimination of metastatic stem cells (MetSCs) promises to block metastatic dissemination. Colorectal cancer (CRC) cells overexpressing CXCR4 display trafficking functions and metastasis-initiating capacity. We assessed the antimetastatic activity of a nanoconjugate (T22-GFP-H6-FdU) that selectively delivers Floxuridine to CXCR4 cells.
View Article and Find Full Text PDFThe CXCR4/CXCL12 axis has been extensively associated with different types of cancer correlating with higher aggressiveness and metastasis. In diffuse large B-cell lymphoma (DLBCL), the expression of the chemokine receptor CXCR4 is involved in the dissemination of malignant B cells and is a marker of poor prognosis. CXCR7 is a chemokine receptor that binds to the same ligand as CXCR4 and regulates de CXCR4-CXCL12 axis.
View Article and Find Full Text PDFSustained release of drug delivery systems (DDS) has the capacity to increase cancer treatment efficiency in terms of drug dosage reduction and subsequent decrease of deleterious side effects. In this regard, many biomaterials are being investigated but none offers morphometric and functional plasticity and versatility comparable to protein-based nanoparticles (pNPs). Here we describe a new DDS by which pNPs are fabricated as bacterial inclusion bodies (IB), that can be easily isolated, subcutaneously injected and used as reservoirs for the sustained release of targeted pNPs.
View Article and Find Full Text PDFLoading capacity and drug leakage from vehicles during circulation in blood is a major concern when developing nanoparticle-based cell-targeted cytotoxics. To circumvent this potential issue it would be convenient the engineering of drugs as self-delivered nanoscale entities, devoid of any heterologous carriers. In this context, we have here engineered potent protein toxins, namely segments of the diphtheria toxin and the Pseudomonas aeruginosa exotoxin as self-assembling, self-delivered therapeutic materials targeted to CXCR4 cancer stem cells.
View Article and Find Full Text PDFIntermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies.
View Article and Find Full Text PDFThe role of paracrine Hepatocyte Growth Factor (HGF) in the resistance to angiogenesis inhibitors (AIs) is hidden in xenograft models because mouse HGF fails to fully activate human MET. To uncover it, we compared the efficacy of AIs in wild-type and human HGF knock-in SCID mice bearing orthotopic human colorectal tumors. Species-specific HGF/MET signaling dramatically impaired the response to anti-angiogenic agents and boosted metastatic dissemination.
View Article and Find Full Text PDFBacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials.
View Article and Find Full Text PDFWe explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs).
View Article and Find Full Text PDF