Publications by authors named "Maria Villalba-Esparza"

Predicting recurrence in low-grade, early-stage endometrial cancer (EC) is both challenging and clinically relevant. We present a weakly-supervised deep learning framework, NaroNet, that can learn, without manual expert annotation, the complex tumor-immune interrelations at three levels: local phenotypes, cellular neighborhoods, and tissue areas. It uses multiplexed immunofluorescence for the simultaneous visualization and quantification of CD68 + macrophages, CD8 + T cells, FOXP3 + regulatory T cells, PD-L1/PD-1 protein expression, and tumor cells.

View Article and Find Full Text PDF

Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients.

View Article and Find Full Text PDF

Objective: Progressive supranuclear palsy (PSP) is a 4R-tauopathy showing heterogeneous tau cytopathology commencing in the globus pallidus (GP) and the substantia nigra (SN), regions also associated with age-related iron accumulation. Abnormal iron levels have been extensively associated with tau pathology in neurodegenerative brains, however, its role in PSP pathogenesis remains yet unknown. We perform the first cell type-specific evaluation of PSP iron homeostasis and the closely related oxygen homeostasis, in relation to tau pathology in human postmortem PSP brains.

View Article and Find Full Text PDF

Endometrial tumors show substantial heterogeneity in their immune microenvironment. This heterogeneity could be used to improve the accuracy of current outcome prediction tools. We assessed the immune microenvironment of 235 patients diagnosed with low-grade, early-stage endometrial cancer.

View Article and Find Full Text PDF

Immune-checkpoint blockade (ICB) therapy has changed the clinical outcome of many types of aggressive tumors, but there still remain many cancer patients that do not respond to these treatments. There is an unmet need to develop a feasible clinical therapeutic platform to increase the rate of response to ICB. Here we use a previously described clinically tested aptamer (AS1411) conjugated with SMG1 RNAi (AS1411-SMG1 aptamer-linked siRNA chimeras [AsiCs]) to inhibit the nonsense-mediated RNA decay pathway inducing tumor inflammation and improving response to ICB.

View Article and Find Full Text PDF

Background: Excessive inflammation is pathogenic in the pneumonitis associated with severe COVID-19. Neutrophils are among the most abundantly present leukocytes in the inflammatory infiltrates and may form neutrophil extracellular traps (NETs) under the local influence of cytokines. NETs constitute a defense mechanism against bacteria, but have also been shown to mediate tissue damage in a number of diseases.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models.

View Article and Find Full Text PDF

Objective: Understanding the immune environment of non-small cell lung cancer (NSCLC) is important for designing effective anticancer immunotherapies. We describe the use of multiplex immunofluorescence (mIF) assays to enable characterisation of the tumour-infiltrating immune cells and their interactions, both across and within immune subtypes.

Methods: Six cytological samples of NSCLC taken by transoesophageal ultrasound-guided fine needle aspiration were tested with an mIF assay designed to detect the expression of key immune cell markers such as CD3, CD8, CD20, CD11b, and CD68.

View Article and Find Full Text PDF

Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients.

View Article and Find Full Text PDF

The use of PD-1/PD-L1 checkpoint inhibitors in advanced NSCLC is associated with longer survival. However, many patients do not benefit from PD-1/PD-L1 blockade, largely because of immunosuppression. New immunotherapy-based combinations are under investigation in an attempt to improve outcomes.

View Article and Find Full Text PDF

The precise nature of the local immune responses in lung tuberculosis (TB) granulomas requires a comprehensive understanding of their environmental complexities. At its most basic level, a granuloma is a compact, organized immune aggregate of macrophages surrounded by myeloid, B and T cells. We established two complementary multiplex immunolabeling panels to simultaneously evaluate the myeloid and lymphocytic contexture of 14 human lung TB granulomas in formalin-fixed paraffin-embedded tissue samples.

View Article and Find Full Text PDF