Phycobiliproteins (PBPs) are colored fluorescent proteins present in cyanobacteria, red alga, and cryptophyta. These proteins have many potential uses in biotechnology going from food colorants to medical applications. Allophycocyanin, the simplest PBP, is a heterodimer of αβ subunits that oligomerizes as a trimer (αβ) .
View Article and Find Full Text PDFRic-8 is a highly conserved cytosolic protein (MW 63 KDa) initially identified in C. elegans as an essential factor in neurotransmitter release and asymmetric cell division. Two different isoforms have been described in mammals, Ric-8A and Ric-8B; each possess guanine nucleotide exchange activity (GEF) on heterotrimeric G-proteins, but with different Galpha subunits specificities.
View Article and Find Full Text PDFImmature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state.
View Article and Find Full Text PDFThe non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not known. Since Galphaq is the main regulator of Ca2+ signaling in vertebrates and from this perspective probably involved in the events elicited by the non-canonical Wnt/Ca2+ pathway, we decided to study the effect of wild-type Xenopus Gq (xGalphaq) in dorso-ventral axis embryo patterning.
View Article and Find Full Text PDFDuring the last decade, considerable evidence is accumulating that supports the view that the classic progesterone receptor (xPR-1) is mediating Xenopus laevis oocyte maturation through a non-genomic mechanism. Overexpression and depletion of oocyte xPR-1 have been shown to accelerate and to block progesterone-induced oocyte maturation, respectively. In addition, rapid inhibition of plasma membrane adenylyl cyclase (AC) by the steroid hormone, supports the idea that xPR-1 should be localized at the oocyte plasma membrane.
View Article and Find Full Text PDF1alpha,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1alpha,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1alpha,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1alpha,25-dihydroxy vitamin D3.
View Article and Find Full Text PDFXenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a non-genomic mechanism initiated at the cell membrane. Recently, two Xenopus oocyte progesterone receptors have been cloned; one is the classical progesterone receptor (xPR-1) involved in genomic actions and the other a putative seven-transmembrane-G-protein-couple receptor. Both receptors are postulated to be mediating the steroid-induced maturation process in the frog oocyte.
View Article and Find Full Text PDFG protein signalling regulates a wide range of cellular processes such as motility, differentiation, secretion, neurotransmission, and cell division. G proteins consist of three subunits organized as a Galpha monomer associated with a Gbetagamma heterodimer. Structural studies have shown that Galpha subunits are constituted by two domains: a Ras-like domain, also called the GTPase domain (GTPaseD), and an helical domain (HD), which is unique to heterotrimeric G-proteins.
View Article and Find Full Text PDFHeterotrimeric G-proteins transduce signals from heptahelical transmembrane receptors to different effector systems, regulating diverse complex intracellular pathways and functions. In brain, facilitation of depolarization-induced neurotransmitter release for synaptic transmission is mediated by Gsalpha and Gqalpha. To identify effectors for Galpha-proteins, we performed a yeast two-hybrid screening of a human brain cDNA library, using the human Galphas protein as a bait.
View Article and Find Full Text PDFG-protein alpha subunits consist of two domains: a Ras-like domain also called GTPase domain (GTPaseD), structurally homologous to monomeric G-proteins, and a more divergent domain, unique to heterotrimeric G-proteins, called helical domain (HD). G-protein activation, requires the exchange of bound GDP for GTP, and since the guanine nucleotide is buried in a deep cleft between both domains, it has been postulated that activation may involve a conformational change that will allow the opening of this cleft. Therefore, it has been proposed, that interdomain interactions are playing an important role in regulating the nucleotide exchange rate of the alpha subunit.
View Article and Find Full Text PDF