Publications by authors named "Maria Venegas-Carro"

Purpose: High-intensity interval training (HIIT) has proven to be effective in improving endurance capacity and muscle endurance. However, its potential to improve other aspects of physical performance such as strength and power has not been well explored, and most research studies used only running and cycling as exercise modalities. Here, we compared the effects of jumping versus running as exercise modalities during a 6-week HIIT.

View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the reliability and sensitivity of various strength and power tests over nine weeks with 17 healthy adults participating.
  • It found that isometric handgrip, knee extension, and countermovement jump tests showed very high reliability and sensitivity, while reactive hops had varied results.
  • The researchers recommend using the average of three trials instead of the best result for more consistent data in longitudinal studies.
View Article and Find Full Text PDF

Purpose: Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue.

Methods: 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL).

View Article and Find Full Text PDF

Purpose: Long stays in space require countermeasures for the degrading effects of weightlessness on the human body, and artificial gravity (AG) has been proposed as an integrated countermeasure. The aim of this study was to assess the cardiorespiratory and neuromuscular demand of AG elicited via daily centrifugation during 60 days of bed rest.

Methods: Twenty four participants (33 ± 9 y, 175 ± 9 cm, 74 ± 10 kg, 8 female) were subjected to 60 days of strict six-degree head-down tilt (HDT) bed rest and were randomly allocated to one of three experimental groups: 30 min of daily centrifugation with an acceleration of 1 g at the center of mass and 2 g at the feet applied continuously (cAG) or intermittently in 6 epochs of 5 min each, separated by 3 min breaks (iAG), or non-centrifuged control (CTRL).

View Article and Find Full Text PDF

Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated.

View Article and Find Full Text PDF