Publications by authors named "Maria Velasco-De-Andres"

is included in the World Health Organization fungal priority pathogen list, complied to expedite improved research and public-health interventions. The limited number of available antifungal drugs, their associated toxicity, and the emergence of drug-resistant strains make the development of new therapeutic strategies mandatory. Pattern-recognition receptors (PRRs) from the host's innate immune system constitute a potential source of new antimicrobial agents.

View Article and Find Full Text PDF

Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts.

View Article and Find Full Text PDF

Cancer management still requires more potent and safer treatments, of which immunomodulatory receptors on the lymphocyte surface have started to show promise in new cancer immunotherapies (e.g., CTLA-4 and PD-1).

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance is a pressing global concern that has led to the search for new antibacterial agents with novel targets or non-traditional approaches. Recently, organogold compounds have emerged as a promising class of antibacterial agents. In this study, we present and characterize a (C^S)-cyclometallated Au(III) dithiocarbamate complex as a potential drug candidate.

View Article and Find Full Text PDF

Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs).

View Article and Find Full Text PDF

Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach.

View Article and Find Full Text PDF

Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) resulting from the interaction of multiple environmental, genetic and immunological factors. and are paralogs encoding lymphocyte co-receptors involved in fine-tuning intracellular signals delivered upon antigen-specific recognition, microbial pattern recognition and cell adhesion. While and expression and variation is known to influence some immune-mediated inflammatory disorders, their role in IBD remains unclear.

View Article and Find Full Text PDF

CD6 is a lymphocyte-specific scavenger receptor expressed on adaptive (T) and innate (B1a, NK) immune cells, which is involved in both fine-tuning of lymphocyte activation/differentiation and recognition of bacterial-associated molecular patterns (i.e., lipopolysaccharide).

View Article and Find Full Text PDF

Spontaneous and secondary peritoneal infections, mostly of bacterial origin, easily spread to cause severe sepsis. Cellular and humoral elements of the innate immune system are constitutively present in peritoneal cavity and omentum, and play an important role in peritonitis progression and resolution. This review will focus on the description of the anatomic characteristics of the peritoneal cavity and the composition and function of such innate immune elements under both steady-state and bacterial infection conditions.

View Article and Find Full Text PDF

The worldwide emergence and spread of infections caused by multidrug-resistant bacteria endangers the efficacy of current antibiotics in the clinical setting. The lack of new antibiotics in the pipeline points to the need of developing new strategies. Recently, gold-based drugs are being repurposed for antibacterial applications.

View Article and Find Full Text PDF

Background: Pre-exposure prophylaxis (PrEP) is a promising strategy to break COVID-19 transmission. Although hydroxychloroquine was evaluated for treatment and post-exposure prophylaxis, it is not evaluated for COVID-19 PrEP yet. The aim of this study was to evaluate the efficacy and safety of PrEP with hydroxychloroquine against placebo in healthcare workers at high risk of SARS-CoV-2 infection during an epidemic period.

View Article and Find Full Text PDF

Pathogens are one of the main selective pressures that ancestral humans had to adapt to. Components of the immune response system have been preferential targets of natural selection in response to such pathogen-driven pressure. In turn, there is compelling evidence showing that positively selected immune gene variants conferring increased resistance to past or present infectious agents are today associated with increased risk for autoimmune or inflammatory disorders but decreased risk of cancer, the other side of the same coin.

View Article and Find Full Text PDF

CD5 and CD6 are closely related signal-transducing class I scavenger receptors mainly expressed on lymphocytes. Both receptors are involved in the modulation of the activation and differentiation cell processes triggered by clonotypic antigen-specific receptors present on T and B cells (TCR and BCR, respectively). To serve such a relevant immunomodulatory function, the extracellular region of CD5 and CD6 interacts with soluble and/or cell-bound endogenous counterreceptors but also microbial-associated molecular patterns (MAMPs).

View Article and Find Full Text PDF

Background And Aims: Bacterial infections are common and severe in cirrhosis, but their pathogenesis is poorly understood. Dysfunction of liver macrophages may play a role, but information about their function in cirrhosis is limited. Our aims were to investigate the specific profile and function of liver macrophages in cirrhosis and their contribution to infections.

View Article and Find Full Text PDF

Invasive fungal diseases represent an unmet clinical need that could benefit from novel immunotherapeutic approaches. Host pattern recognition receptors (e.g.

View Article and Find Full Text PDF

Background: CD6 is a lymphocyte surface co-receptor physically associated with the T-cell receptor (TCR)/CD3 complex at the center of the immunological synapse. There, CD6 assists in cell-to-cell contact stabilization and modulation of activation/differentiation events through interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), its main reported ligand. While accumulating evidence is attracting new interest on targeting CD6 for therapeutic purposes in autoimmune disorders, little is known on its potential in cancer.

View Article and Find Full Text PDF

Individual susceptibility differences to fungal infection following invasive and/or immunosuppressive medical interventions are an important clinical issue. In order to explore immune response-related factors that may be linked to fungal infection susceptibility, we have compared the response of inbred C57BL/6J and outbred CD1 mouse strains to different experimental models of fungal sepsis. The challenge of animals with the zymosan-induced generalised inflammation model revealed poorer survival rates in C57BL/6J, consistent with lower Th1 cytokine interferon (IFN)-γ serum levels, compared with CD1 mice.

View Article and Find Full Text PDF

Background: Scavenger Receptors (SRs) from the host's innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses.

View Article and Find Full Text PDF

Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor.

View Article and Find Full Text PDF

Modulation of antitumor immune responses by targeting immune checkpoint regulators has been proven successful in the treatment of many different tumors. Recent evidence shows that the lymphocyte receptor CD5 -a negative regulator of TCR-mediated signaling- may play a role in the anti-tumor immune response. To explore such an issue, we developed transgenic C57BL/6 mice expressing a soluble form of human CD5 (shCD5EμTg), putatively blocking CD5-mediated interactions ("decoy receptor" effect).

View Article and Find Full Text PDF