Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics.
View Article and Find Full Text PDFDiagnostics (Basel)
April 2021
Despite the differences in the clinical manifestations of major obstetric syndromes, such as preeclampsia (PE) and intrauterine growth restriction (IUGR), their pathogenesis is based on the dysregulation of proliferation, differentiation, and invasion of cytotrophoblast cells that occur in the developing placenta, decidual endometrium, and myometrial parts of the spiral arteries. To understand the similarities and differences in the molecular mechanisms of PE and IUGR, samples of the placental bed and placental tissue were analyzed using protein mass spectrometry and the deep sequencing of small RNAs, followed by validation of the data obtained by quantitative RT-PCR in real time. A comparison of the transcriptome and proteomic profiles in the samples made it possible to conclude that the main changes in the molecular profile in IUGR occur in the placental bed, in contrast to PE, in which the majority of molecular changes occurs in the placenta.
View Article and Find Full Text PDF