Toxoplasmosis, a worldwide distributed zoonosis, can be transmitted congenitally affecting fetuses and developing variable clinical signs. Different Toxoplasma gondii genotypes and infective dose are related factors with different clinical manifestations. Several studies indicate that atypical strains could produce more severe clinical manifestations compared to typical strains.
View Article and Find Full Text PDFThroughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain.
View Article and Find Full Text PDFA prevalence study of antibodies anti Toxoplasma gondii in voluntary blood donors who attended the hemotherapy service at the Hospital Alemán during the first four months of the years 1997, 2007 and 2017 was carried out and the results were compared to the study carried out in 1967. The sera where processed with the Sabin Feldman Dye Test. The global average seroprevalence in 1967 was 67.
View Article and Find Full Text PDFEMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs.
View Article and Find Full Text PDFDemand for training life scientists in bioinformatics methods, tools and resources and computational approaches is urgent and growing. To meet this demand, new trainers must be prepared with effective teaching practices for delivering short hands-on training sessions-a specific type of education that is not typically part of professional preparation of life scientists in many countries. A new Train-the-Trainer (TtT) programme was created by adapting existing models, using input from experienced trainers and experts in bioinformatics, and from educational and cognitive sciences.
View Article and Find Full Text PDFBioinformatics is now intrinsic to life science research, but the past decade has witnessed a continuing deficiency in this essential expertise. Basic data stewardship is still taught relatively rarely in life science education programmes, creating a chasm between theory and practice, and fuelling demand for bioinformatics training across all educational levels and career roles. Concerned by this, surveys have been conducted in recent years to monitor bioinformatics and computational training needs worldwide.
View Article and Find Full Text PDFScientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research.
View Article and Find Full Text PDFIntegr Biol (Camb)
February 2017
In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more.
View Article and Find Full Text PDFData sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration.
View Article and Find Full Text PDFBioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects.
View Article and Find Full Text PDFIn recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy--paradoxically, many are actually closing "niche" bioinformatics courses at a time of critical need.
View Article and Find Full Text PDFOne of the foundations of the scientific method is to be able to reproduce experiments and corroborate the results of research that has been done before. However, with the increasing complexities of new technologies and techniques, coupled with the specialisation of experiments, reproducing research findings has become a growing challenge. Clearly, scientific methods must be conveyed succinctly, and with clarity and rigour, in order for research to be reproducible.
View Article and Find Full Text PDFWhole genome analysis based on next generation sequencing (NGS) now represents an affordable framework in public health systems. Robust analytical pipelines of genomic data provides in short laps of time (hours) information about taxonomy, comparative genomics (pan-genome) and single polymorphisms profiles. Pathogenic organisms of interest can be tracked at the genomic level, allowing monitoring at one-time several variables including: epidemiology, pathogenicity, resistance to antibiotics, virulence, persistence factors, mobile elements and adaptation features.
View Article and Find Full Text PDFSummary: Rapid technological advances have led to an explosion of biomedical data in recent years. The pace of change has inspired new collaborative approaches for sharing materials and resources to help train life scientists both in the use of cutting-edge bioinformatics tools and databases and in how to analyse and interpret large datasets. A prototype platform for sharing such training resources was recently created by the Bioinformatics Training Network (BTN).
View Article and Find Full Text PDFThe mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe.
View Article and Find Full Text PDFNext-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented.
View Article and Find Full Text PDFSummary: We present iAnn, an open source community-driven platform for dissemination of life science events, such as courses, conferences and workshops. iAnn allows automatic visualisation and integration of customised event reports. A central repository lies at the core of the platform: curators add submitted events, and these are subsequently accessed via web services.
View Article and Find Full Text PDFHere we provide a broad overview of the definition of the term "systems biology" as well as pinpoint specific events in biological research and beyond that are consistently cited to have contributed and led to the current science of in silico systems biology. Since there have been many reviews and historical accounts describing the term, it would be impossible to include all single references. However, we do attempt to provide a consensus vision of how the field has evolved and consequently the terminology that followed it.
View Article and Find Full Text PDFThe widespread adoption of high-throughput next-generation sequencing (NGS) technology among the Australian life science research community is highlighting an urgent need to up-skill biologists in tools required for handling and analysing their NGS data. There is currently a shortage of cutting-edge bioinformatics training courses in Australia as a consequence of a scarcity of skilled trainers with time and funding to develop and deliver training courses. To address this, a consortium of Australian research organizations, including Bioplatforms Australia, the Commonwealth Scientific and Industrial Research Organisation and the Australian Bioinformatics Network, have been collaborating with EMBL-EBI training team.
View Article and Find Full Text PDF