Publications by authors named "Maria V Sainz de Cea"

In computer-aided detection or diagnosis of clustered microcalcifications (MCs) in mammograms, the performance often suffers from not only the presence of false positives (FPs) among the detected individual MCs but also large variability in detection accuracy among different cases. To address this issue, we investigate a locally adaptive decision scheme in MC detection by exploiting the noise characteristics in a lesion area. Instead of developing a new MC detector, we propose a decision scheme on how to best decide whether a detected object is an MC or not in the detector output.

View Article and Find Full Text PDF

Computerized detection of clustered microcalcifications (MCs) in mammograms often suffers from the occurrence of false positives (FPs), which can vary greatly from case to case. We investigate how to apply statistical estimation to determine the number of FPs that are present in a detected MC lesion. First, we describe the number of true positives (TPs) by a Poisson-binomial probability distribution, wherein a logistic regression model is trained to determine the probability for an individual detected MC to be a TP based on its detector output.

View Article and Find Full Text PDF