Publications by authors named "Maria V Rosato-Siri"

Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction.

View Article and Find Full Text PDF

At first glance, the biological function of globoside (Gb) clusters appears to be that of glycosphingolipid (GSL) receptors for bacterial toxins that mediate host-pathogen interaction. Indeed, certain bacterial toxin families have been evolutionarily arranged so that they can enter eukaryotic cells through GSL receptors. A closer look reveals this molecular arrangement allocated on a variety of eukaryotic cell membranes, with its role revolving around physiological regulation and pathological processes.

View Article and Find Full Text PDF

Atypical connectivity between brain regions and altered structure of the corpus callosum (CC) in imaging studies supports the long-distance hypoconnectivity hypothesis proposed for autism spectrum disorder (ASD). The aim of this study was to unveil the CC ultrastructural and cellular changes employing the valproic acid (VPA) rat model of ASD. Male Wistar rats were exposed to VPA (450 mg/kg i.

View Article and Find Full Text PDF

The current study presents two different approaches with a view to elucidating the interaction between thyroid hormones (TH) and apo-transferrin (aTf) and their role in myelination and remyelination. First, in vitro assays were conducted to determine the single and combined effects of aTf and triiodothyronine (T3) on oligodendroglial cell lineage proliferation and oligodendrocyte (OLG) maturation in primary cultures. Results revealed higher proliferation rates upon single aTf treatment but Control values upon T3 and aTf + T3 treatments.

View Article and Find Full Text PDF

Shiga toxin (Stx) produced by enterohemorrhagic produces hemolytic uremic syndrome and encephalopathies in patients, which can lead to either reversible or permanent neurological abnormalities, or even fatal cases depending on the degree of intoxication. It has been observed that the inflammatory component plays a decisive role in the severity of the disease. Therefore, the objective of this work was to evaluate the behavior of microglial cell primary cultures upon Stx2 exposure and heat shock or lipopolysaccharide challenges, as cues which modulate cellular environments, mimicking fever and inflammation states, respectively.

View Article and Find Full Text PDF

Developmental iron deficiency (dID) models facilitate the study of specific oligodendrocyte (OL) requirements for their progression to a mature state and subsequent contribution to myelination. In the current work, we used the dID model in transgenic mice expressing green fluorescence protein under the CNPase promoter allowing the identification of cells belonging to the oligodendroglial lineage, and the visualization of the entire myelin structure and single OL morphology. The present work evaluates dID effects on OL complexity in different brain areas.

View Article and Find Full Text PDF

Prenatal iron deficiency (pID) has been described to increase the risk for neurodevelopmental disorders such as autism and schizophrenia; however, the precise molecular mechanisms are still unknown. Here, we utilized high-throughput MS to examine the proteomic effects of pID in adulthood on the rat frontal cortex area (FCA). In addition, the FCA proteome was examined in adulthood following risperidone treatment in adolescence to see if these effects could be prevented.

View Article and Find Full Text PDF

When disrupted, iron homeostasis negatively impacts oligodendrocyte (OLG) differentiation and impairs myelination. To better understand myelin formation and OLG maturation, in vivo and in vitro studies were conducted to evaluate the effect of iron deficiency (ID) not only on OLG maturation but also on astrocytes (AST) and microglial cells (MG). In vivo experiments in an ID model were carried out to describe maturational events during OLG and AST development and the reactive profile of MG during myelination when iron availability is lower than normal.

View Article and Find Full Text PDF

Considering the worldwide incidence of well characterized demyelinating disorders such as Multiple Sclerosis (MS) and the increasing number of pathologies recently found to involve hypomyelinating factors such as micronutrient deficits, elucidating the molecular basis of central nervous system (CNS) demyelination, remyelination and hypomyelination becomes essential to the development of future neuroregenerative therapies. In this context, this review discusses novel findings on the contribution of galectin-3 (Gal-3), transferrin (Tf) and iron to the processes of myelination and remyelination and their potentially positive regulation of oligodendroglial precursor cell (OPC) differentiation. Studies were conducted in cuprizone (CPZ)-induced demyelination and iron deficiency (ID)-induced hypomyelination, and the participation of glial and neural stem cells (NSC) in the remyelination process was evaluated by means of both in vivo and in vitro assays on primary cell cultures.

View Article and Find Full Text PDF

The aim of this study was to determine whether early demyelination can impact behavior in young adulthood. For this purpose, albino Wistar rats of either sex were exposed to cuprizone (CPZ) in two different intoxication protocols: one group was intoxicated before weaning (CPZ-BW), from postnatal day 7 (P7) to P21, through maternal milk, whereas the other group was intoxicated after weaning (CPZ-AW), from P21 to P35. After treatment, rats were returned to a normal diet until P90 when behavioral studies were performed.

View Article and Find Full Text PDF

We have previously shown that the early Xenopus organiser contains cells equally potent to give rise to notochord or floor plate, and that Notch signalling triggers a binary decision, favouring the floor plate fate at the expense of the notochord. Now, we present evidence that Delta1 is the ligand that triggers the binary switch, which is executed through the Notch-mediated activation of hairy2a in the surrounding cells within the organiser, impeding their involution through the blastopore and promoting their incorporation into the hairy2a+ notoplate precursors (future floor-plate cells) in the dorsal non-involuting marginal zone.

View Article and Find Full Text PDF

We analysed the role of Notch signalling during the specification of the dorsal midline in Xenopus embryos. By activating or blocking the pathway we found that Notch expands the floor plate domain of sonic hedgehog and pintallavis and represses the notochordal markers chordin and brachyury, with a concomitant reduction of the notochord size. We propose that within a population of the early organiser with equivalent potential to develop either as notochord or floor plate, Notch activation favours floor plate development at the expense of the notochord, preferentially before mid gastrula.

View Article and Find Full Text PDF