Publications by authors named "Maria V Lara"

Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process.

View Article and Find Full Text PDF

Taphrina deformans is the fungus responsible for the peach leaf curl disease. To gain insight into the molecular mechanisms involved in plant resistance and response to the fungus, apoplastic differentially abundant proteins (DAPs) in a resistant (DR) and/or in a susceptible genotype (FL) were identified after 12 and 96 h post inoculation (hpi) and compared to those at 0 hpi. The Prunus persica apoplastic proteome was assessed by LC-MS/MS analysis.

View Article and Find Full Text PDF

The partitioning of assimilates in fruits, which are economically important sink organs, is ruled by different physiological processes and affected by both environmental and agronomical factors. The bulk of the water and solutes, required for growth, is imported into fruits and seeds through xylem and phloem. In the stone fruits, five vascular bundles enter the base of the fruit, then dividing to supply either the flesh or the seed.

View Article and Find Full Text PDF

Non-structural carbohydrates are abundant constituents of the ripe flesh of all stone fruits. The bulk of their content comprises sucrose, glucose, fructose and sorbitol. However, the abundance of each of these carbohydrates in the flesh differs between species, and also with its stage of development.

View Article and Find Full Text PDF

Stone fruits of the Rosaceae family consist of several distinct parts, and these include the flesh, woody endocarp, and seed. To understand the metabolism of these fruits, it is necessary to have knowledge of both their structure and growth characteristics. The nitrogen metabolism of the different tissues of stone fruits is interlinked.

View Article and Find Full Text PDF

Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases.

View Article and Find Full Text PDF

Cell wall turnover and modification in its composition are key factors during stone fruit development and patterning. Changes in cell wall disassembly and reassembly are essential for fruit growth and ripening. Modifications in cell wall composition, resulting in the formation of secondary cell walls, are necessary for producing the most distinctive trait of drupes: the lignified endocarp.

View Article and Find Full Text PDF

A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection. Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms.

View Article and Find Full Text PDF

Severe droughts are predicted for the twenty-first century, which contrast with the increased demand for plant materials. Thus, to sustain future generations, a great challenge is to improve crop yield and water use efficiency (WUE), which is the carbon gained per water lost. Here, expression of maize NADP-malic enzyme (NADP-ME) in the guard and vascular companion cells of Nicotiana tabacum results in enhanced WUE, earlier flowering and shorter life cycle.

View Article and Find Full Text PDF

Peaches ripen and deteriorate rapidly at room temperature. Therefore, refrigeration is used to slow these processes and to extend fruit market life; however, many fruits develop chilling injury (CI) during storage at low temperature. Given that cell membranes are likely sites of the primary effects of chilling, the lipidome of six peach varieties with different susceptibility to CI was analyzed under different postharvest conditions.

View Article and Find Full Text PDF

The worldwide-distributed leaf peach curl disease is caused by the biotroph Taphrina deformans. To characterize the plant-fungus interaction, resistant and susceptible Prunus persica genotypes grown in the orchard were studied. Asymptomatic leaves were tested for fungal presence.

View Article and Find Full Text PDF

Leaf peach curl is a devastating disease affecting leaves, flowers and fruits, caused by the dimorphic fungus Taphrina deformans. To gain insight into the mechanisms of fungus pathogenesis and plant responses, leaves of a resistant and two susceptible Prunus persica genotypes were inoculated with blastospores (yeast), and the infection was monitored during 120 h post inoculation (h.p.

View Article and Find Full Text PDF

Reconfiguration of the metabolome is a key component involved in the acclimation to cold in plants; however, few studies have been devoted to the analysis of the overall metabolite changes after cold storage of fruits prior to consumption. Here, metabolite profiling of six peach varieties with differential susceptibility to develop mealiness, a chilling-injury (CI) symptom, was performed. According to metabolic content at harvest; after cold treatment; and after ripening, either following cold treatment or not; peach fruits clustered in distinct groups, depending on harvest-time, cold treatment, and ripening state.

View Article and Find Full Text PDF

The results obtained indicate that a β-xylosidase gene may act as good indicator of chilling tolerance and provide new insights into the complex issue of peach fruit woolliness. The storage of peaches at low temperatures for prolonged periods can induce a form of chilling injury (CI) called woolliness, characterized by a lack of juiciness and a mealy texture. As this disorder has been associated with abnormal cell wall dismantling, the levels of 12 transcripts encoding proteins involved in cell wall metabolism were analysed in cultivars with contrasting susceptibility to this disorder selected from five melting flesh peach cultivars.

View Article and Find Full Text PDF

Peach (Prunus persica) fruits from different varieties display differential organoleptic and nutritional properties, characteristics related to their chemical composition. Here, chemical biodiversity of peach fruits from fifteen varieties, at harvest and after post-harvest ripening, was explored by gas chromatography-mass spectrometry. Metabolic profiling revealed that metabolites involved in organoleptic properties (sugars, organic and amino acids), stress tolerance (raffinose, galactinol, maltitol), and with nutritional properties (amino, caffeoylquinic and dehydroascorbic acids) displayed variety-dependent levels.

View Article and Find Full Text PDF

Portulaca oleracea is one of the richest plant sources of ω-3 and ω-6 fatty acids and other compounds potentially valuable for nutrition. It is broadly established in arid, semiarid and well-watered fields, thus making it a promising candidate for research on abiotic stress resistance mechanisms. It is capable of withstanding severe drought and then of recovering upon rehydration.

View Article and Find Full Text PDF

Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P.

View Article and Find Full Text PDF

Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage.

View Article and Find Full Text PDF

Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms.

View Article and Find Full Text PDF

Ripening of peach (Prunus persica L. Batsch) fruit is accompanied by dramatic cell wall changes that lead to softening. Post-harvest heat treatment is effective in delaying softening and preventing some chilling injury symptoms that this fruit exhibits after storage at low temperatures.

View Article and Find Full Text PDF

Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp.

View Article and Find Full Text PDF

The use of modified atmospheres has been successfully applied in different fruits to delay the ripening process and to prevent physiological disorders. In addition, during normal ripening, hypoxic areas are generated inside the fruit; moreover, anaerobic conditions may also arise during fruit post-harvest storage and handling. In consequence, the fruit is an interesting model to analyze the metabolic modifications due to changes in oxygen levels.

View Article and Find Full Text PDF

Although the physiological and economical relevance of flowers is recognized, their primary metabolism during development has not been characterized, especially combining protein, transcript, and activity levels of the different enzymes involved. In this work, the functional characterization of the photosynthetic apparatus, pigment profiles, and the main primary metabolic pathways were analysed in tobacco sepals and petals at different developmental stages. The results indicate that the corolla photosynthetic apparatus is functional and capable of fixing CO(2); with its photosynthetic activity mainly involved in pigment biosynthesis.

View Article and Find Full Text PDF

Shipping of peaches to distant markets and storage require low temperature; however, cold storage affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). In order to ameliorate CI, different strategies have been applied before cold storage; among them heat treatment (HT) has been widely used. In this work, the effect of HT on peach fruit quality as well as on carbon metabolism was evaluated.

View Article and Find Full Text PDF