Publications by authors named "Maria V Brito"

Ethnopharmacological Relevance: The plants of the genus Casimirella ampla (Miers) (C. ampla) are extensively used in folk medicine. For a long time, rural communities have been using extracts from its roots for food and therapeutic purposes.

View Article and Find Full Text PDF

Fusarium kalimantanense is a genetic lineage of Fusarium oxysporum f. sp. cubense (Foc) and belongs to the Fusarium oxysporum species complex (FOSC).

View Article and Find Full Text PDF

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles.

View Article and Find Full Text PDF

Annonalide (3β,20-epoxy-3α,16-dihydroxy-15-oxo-7-pimaren-19,6β-olide, CHO, 1) is the major (9βH)-pimarane diterpene isolated from tubers of Cassimirella ampla, and it exhibits cytotoxic properties upon interaction with ctDNA. We have prepared new derivatives of 1 by modification of the (9βH)-pimarane backbone and report here the semisynthesis and absolute configuration of a novel rearranged 19,20-δ-lactone (9βH)-pimarane. Our approach was the reduction of the carbonyl groups of 1 with sodium borohydride, at positions C15 (no stereoselectivity) and C3 (stereoselective reduction), followed by rearrangement of the 6,19-γ-lactone ring into the six-membered 19,20-δ-lactone ring in 4a (3β,6β,16-trihydroxy-7-pimaren-19,20β-olide monohydrate, CHO·HO).

View Article and Find Full Text PDF

The cytotoxic activity of the pimarane diterpene annonalide (1) and nine of its semisynthetic derivatives (2-10) was investigated against the human tumor cell lines HL-60 (leukemia), PC-3 (prostate adenocarcinoma), HepG2 (hepatocellular carcinoma), SF-295 (glioblastoma) and HCT-116 (colon cancer), and normal mouse fibroblast (L929) cells. The preparation of 2-10 involved derivatization of the side chain of 1 at C-13. Except for 2, all derivatives are being reported for the first time.

View Article and Find Full Text PDF