Publications by authors named "Maria V Barone"

This study provides a comprehensive proteomic and metabolomic analysis of novel anthocyanin- and carotenoid-rich wheat varieties to assess their immunogenicity in the context of Celiac Disease. Using (semi)-quantitative mass spectrometry, the research found that gliadin expression and peptide release, particularly those containing immunostimulatory γ-gliadin epitopes, vary significantly across different wheat varieties. While non-targeted mass spectrometry provided valuable insights, the study acknowledged potential methodological biases, such limitations of ion current intensity as a measure of peptide abundance.

View Article and Find Full Text PDF

Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, such as cell growth, inflammation, differentiation, immune-mediated responses and oncogenic transformation. The aim of this review is to review the literature concerning the role of several PTPs-PTPN22, PTPN2, PTPN6, PTPN11, PTPσ, DUSP2, DUSP6 and PTPRK-at the level of the intestinal mucosa in inflammatory bowel disease (IBD), celiac disease (CeD) and type 1 diabetes (T1D) in both in vitro and in vivo models. The results revealed shared features, at the level of the intestinal mucosa, between these diseases characterized by alterations of different biological processes, such as proliferation, autoimmunity, cell death, autophagy and inflammation.

View Article and Find Full Text PDF

Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers.

View Article and Find Full Text PDF

Celiac disease (CD) is an autoimmune enteropathy caused by an abnormal immune response to gliadin peptides in genetically predisposed individuals. For people with CD, the only available therapy thus far is the lifelong necessity for a gluten-free diet (GFD). Innovative therapies include probiotics and postbiotics as dietary supplements, both of which may benefit the host.

View Article and Find Full Text PDF

Celiac disease (CD) is an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals by genetically predisposed individuals. Constitutive differences between cells from CD patients and control subjects, including levels of protein phosphorylation, alterations of vesicular trafficking, and regulation of type 2 transglutaminase (TG2), have been reported. In the present work, we investigated how skin-derived fibroblasts from CD and control subjects responded to thapsigargin, an endoplasmic reticulum ER stress inducer, in an attempt to contribute to the comprehension of molecular features of the CD cellular phenotype.

View Article and Find Full Text PDF

Background & Aims: Celiac disease (CeD) is an immune-mediated enteropathy triggered in genetically susceptible (HLA-DQ2/8) individuals by a group of wheat proteins and related prolamins from cereals. The celiac intestine is characterized by an inversion of the differentiation/proliferation program of the enterocytes, with an increase in the proliferative compartment and crypt hyperplasia, which are the mechanisms that regulate the increased proliferation in CeD that arenot completely understood.The aim of this study is to understand the role of Protein Tyrosine Phosphatase Receptor Type K (PTPRK), a nodal phosphatase that regulates EGFR activation in the proliferation of the enterocytes from CeD biopsies and organoids.

View Article and Find Full Text PDF

Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed.

View Article and Find Full Text PDF

Ingested food can cause tissue inflammation through different mechanisms [...

View Article and Find Full Text PDF

Celiac disease (CD) is an autoimmune disease characterized by an altered immune response stimulated by gliadin peptides that are not digested and cause damage to the intestinal mucosa. The aim of this study was to investigate whether the postbiotic (LP) could prevent the action of gliadin peptides on mTOR, autophagy, and the inflammatory response. Most of the experiments performed were conducted on intestinal epithelial cells Caco-2 treated with a peptic-tryptic digest of gliadin (PTG) and P31-43.

View Article and Find Full Text PDF

Celiac disease (CD) is a chronic inflammatory disease caused by a genetic predisposition to an abnormal T cell-mediated immune response to the gluten in the diet. Different environmental proinflammatory factors can influence and amplify the T cell-mediated response to gluten. The aim of this manuscript was to study the role of enterocytes in CD intestinal inflammation and their response to different proinflammatory factors, such as gliadin and viruses.

View Article and Find Full Text PDF

Prostate cancer (PC) is one of the most widespread malignancies among males worldwide. The androgen receptor (AR) plays a major role in prostate cancer development and progression and is the main target of PC therapy. Nonetheless, its action is not yet fully elucidated.

View Article and Find Full Text PDF

Celiac disease (CD) is a frequent intestinal inflammatory disease occurring in genetically susceptible individuals upon gluten ingestion. Recent studies point to a role in CD for genes involved in cell shape, adhesion and actin rearrangements, including a Rho family regulator, Rho GTPase-activating protein 31 (ARHGAP31). In this study, we investigated the morphology and actin cytoskeletons of peripheral monocyte-derived dendritic cells (DCs) from children with CD and controls when in contact with a physiological substrate, fibronectin.

View Article and Find Full Text PDF

Coeliac disease (CD) is the prototype of an inflammatory chronic disease induced by food. In this context, gliadin p31-43 peptide comes into the spotlight as an important player of the inflammatory/innate immune response to gliadin in CD. The p31-43 peptide is part of the p31-55 peptide from α-gliadins that remains undigested for a long time, and can be present in the small intestine after ingestion of a gluten-containing diet.

View Article and Find Full Text PDF

Celiac disease (CD) is a type of inflammatory chronic disease caused by nutrients such as gliadin that induce a TC (T cell)-mediated response in a partially known genetical background in an environment predisposed to inflammation, including viruses and food. Various experimental and clinical observations suggest that multiple agents such as viruses and bacteria have some common, inflammatory pathways predisposing individuals to chronic inflammatory diseases including celiac disease (CD). More recently, a Western diet and lifestyle have been linked to tissue inflammation and increase in chronic inflammatory diseases.

View Article and Find Full Text PDF

Prostate cancer represents the major cause of cancer-related death in men and patients frequently develop drug-resistance and metastatic disease. Most studies focus on hormone-resistance mechanisms related to androgen receptor mutations or to the acquired property of prostate cancer cells to over-activate signaling pathways. Tumor microenvironment plays a critical role in prostate cancer progression.

View Article and Find Full Text PDF

Gluten fragments released in gut of celiac individuals activate the innate or adaptive immune systems. The molecular mechanisms associated with the adaptive response involve a series of immunodominant gluten peptides which are mainly recognized by human leucocyte antigen (HLA)-DQ2.5 and HLA-DQ8.

View Article and Find Full Text PDF

Ataxia-Telangiectasia (A-T) is characterized by cerebellar neurodegeneration and immunodeficiency. Recent studies suggest that very low glucocorticoids (GCs) doses may help improve A-T neurological phenotype in some patients. Interestingly, in GCs studies an unexpected improvement of lymphocytes proliferation in some A-T patients has been observed.

View Article and Find Full Text PDF

Type 2 transglutaminase (TG2) is a ubiquitous enzyme able to modify gliadin peptides introduced into the organism through the diet. By means of its catalytic activity, TG2 seems to have an important pathogenetic role in celiac disease (CD), an inflammatory intestinal disease caused by the ingestion of gluten-containing cereals. A strong autoimmune response to TG2 characterizes CD development.

View Article and Find Full Text PDF

Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g.

View Article and Find Full Text PDF

We previously identified a Neisseria flavescens strain in the duodenum of celiac disease (CD) patients that induced immune inflammation in ex vivo duodenal mucosal explants and in CaCo-2 cells. We also found that vesicular trafficking was delayed after the CD-immunogenic P31-43 gliadin peptide-entered CaCo-2 cells and that Lactobacillus paracasei CBA L74 (L. paracasei-CBA) supernatant reduced peptide entry.

View Article and Find Full Text PDF

Coeliac disease is an increasingly recognised pathology, induced by the ingestion of gluten in genetically predisposed patients. Undigested gliadin peptide can induce adaptive and innate immune response that unleash the typical intestinal mucosal alterations. A growing attention is paid to alternative therapeutic approaches to the gluten-free diet: one of these approaches is the use of probiotics and/or postbiotics.

View Article and Find Full Text PDF

Inflammation of intestinal tissue in patients affected by celiac disease (CD) originates from the adaptive and innate immune responses elicited by the undigested gliadin fragments through molecular mechanisms not yet completely described. Undigested A-gliadin peptide P31-43 is central to CD pathogenesis, entering enterocytes in vesicular compartments by endocytosis and inducing an innate immune response in CD intestinal mucosa. This study focused on the reasons why P31-43 does not behave as adaptive immunogenic agent.

View Article and Find Full Text PDF

Celiac disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides are resistant to intestinal digestion (e.g.

View Article and Find Full Text PDF