Thirty-four different loci for hereditary spastic paraplegias have been mapped, and 16 responsible genes have been identified. Autosomal recessive forms of spastic paraplegias usually have clinically complex phenotypes but the SPG5, SPG24 and SPG28 loci are considered to be associated with 'pure' forms of the disease. Very recently, five mutations in the CYP7B1 gene, encoding a cytochrome P450 oxysterol 7-alpha hydroxylase and expressed in brain and liver, have been found in SPG5 families.
View Article and Find Full Text PDFHereditary spastic paraplegia (HSP) is a neurodegenerative condition defined clinically by lower limb spasticity and weakness. Homozygous mutations in CYP7B1 have been identified in several consanguineous families that represented HSP type 5 (SPG5), one of the many genetic forms of the disease. We used direct sequencing and multiplex ligation-dependent probe amplification to screen for CYP7B1 alterations in apparently sporadic HSP patients (n = 12) as well as index patients from non-consanguineous families with recessive (n = 8) and dominant (n = 8) transmission of HSP.
View Article and Find Full Text PDFThe hereditary spastic paraplegias (HSPs) are a genetically and clinically heterogeneous group of upper-motor-neuron degenerative diseases characterized by selective axonal loss in the corticospinal tracts and dorsal columns. Although numerous mechanisms involving defective subcellular transportation, mitochondrial malfunction, and increased oxidative stress have been proposed, the pathogenic basis underlying the neuronal loss is unknown. We have performed linkage analysis to refine the extent of the SPG5 disease locus and conducted sequence analysis of the genes located within this region.
View Article and Find Full Text PDF