Am J Physiol Gastrointest Liver Physiol
October 2021
Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNA-seq) provides a unique opportunity to study heterogeneous cell populations within tissues, including the intestinal epithelium, to gain detailed molecular insights into their biology. Many new putative markers of intestinal stem cells and their progeny have been described using single-cell transcriptomics, which has contributed to the identification of novel subpopulations of mature cell types and insight into their developmental trajectories. This approach has revealed tremendous cellular heterogeneity within the intestinal epithelium that is concordant with its diverse and multifaceted functions.
View Article and Find Full Text PDFNucleotidyl transfer is an archetypal enzyme reaction central to DNA replication and repair. Here we describe a variation of the nucleotidylation reaction termed "catch and release" that is used by an antibiotic modifying enzyme. The aminoglycoside nucleotidyl transferase 4' (ANT4') inactivates antibiotics such as kanamycin and neomycin through nucleotidylation within an active site that shares significant structural, and inferred underlying catalytic similarity, with human DNA polymerase beta.
View Article and Find Full Text PDF