As species arise, evolve and diverge, they are shaped by forces that unfold across short and long timescales and at both local and vast geographical scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species.
View Article and Find Full Text PDFClimate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis).
View Article and Find Full Text PDFThermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations.
View Article and Find Full Text PDFHost-parasite associations facilitate the action of reciprocal selection and can drive rapid evolutionary change. When multiple host species are available to a single parasite, parallel specialization on different hosts may promote the action of diversifying natural selection and divergence via host race formation. Here, we examine a population of the kidnapper ant () that is an obligate social parasite of three sympatric ant species: , , and (formerly ).
View Article and Find Full Text PDFRecent advances in high-throughput sequencing library preparation and subgenomic enrichment methods have opened new avenues for population genetics and phylogenetics of nonmodel organisms. To multiplex large numbers of indexed samples while sequencing predominantly orthologous, targeted regions of the genome, we propose modifications to an existing, in-solution capture that utilizes PCR products as target probes to enrich library pools for the genomic subset of interest. The sequence capture using PCR-generated probes (SCPP) protocol requires no specialized equipment, is highly flexible and significantly reduces experimental costs for projects where a modest scale of genetic data is optimal (25-100 genomic loci).
View Article and Find Full Text PDFInvasive species often have reduced genetic diversity, but the opposite can be true if there have been multiple introductions and genetic admixture. Reduced diversity is most likely soon after establishment, in remote locations, when there is lower propagule pressure and with stepping-stone colonizations. The common house gecko (Hemidactylus frenatus) was introduced to Moorea, French Polynesia in the remote eastern Pacific within the last two decades and accordingly is expected to exhibit low diversity.
View Article and Find Full Text PDFIt is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics [AWT]) with a well-established history of refugial isolation during Pleistocene glacial periods, we tested whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog Cophixalus ornatus.
View Article and Find Full Text PDFWe investigated genetic diversity of the hellbender (Cryptobranchus alleganiensis) throughout its range in the eastern US using nuclear markers and compared our results to a previously published mitochondrial analysis. A variety of nuclear markers, including protein-coding gene introns and microsatellites were tested but only microsatellites were variable enough for population level analysis. Microsatellite loci showed moderate among population sharing of alleles, in contrast to the reciprocal monophyly exhibited by mitochondrial DNA.
View Article and Find Full Text PDFGlobally, montane tropical diversity is characterized by extraordinary local endemism that is not readily explained by current environmental variables indicating a strong imprint of history. Montane species often exist as isolated populations under current climatic conditions and may have remained isolated throughout recent climatic cycles, leading to substantial genetic and phenotypic divergence. Alternatively, populations may have become contiguous during colder climates resulting in less divergence.
View Article and Find Full Text PDF