Publications by authors named "Maria Teresa Quaranta"

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes.

View Article and Find Full Text PDF

Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance.

View Article and Find Full Text PDF

Background And Aims: Intestinal fibrosis is a common complication of inflammatory bowel diseases. Medical treatment of intestinal fibrosis is an unmet therapeutic need. CD147 overexpression can induce myofibroblast differentiation associated with extracellular matrix deposition, favouring the development of fibrosis.

View Article and Find Full Text PDF

Metabolism in acute myeloid leukemia (AML) cells is dependent primarily on oxidative phosphorylation. However, in order to sustain their high proliferation rate and metabolic demand, leukemic blasts use a number of metabolic strategies, including glycolytic metabolism. Understanding whether monocarboxylate transporters MCT1 and MCT4, which remove the excess of lactate produced by cancer cells, represent new hematological targets, and whether their respective inhibitors, AR-C155858 and syrosingopine, can be useful in leukemia therapy, may reveal a novel treatment strategy for patients with AML.

View Article and Find Full Text PDF

CD147 is a transmembrane glycoprotein with multiple functions in human healthy tissues and diseases, in particular in cancer. Overexpression of CD147 correlates with biological functions that promote tumor progression and confers resistance to chemotherapeutic drugs. In contrast to solid tumors, the role of CD147 has not been extensively studied in leukemia.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy, a genetic disorder that results in a gradual breakdown of muscle, is associated to mild to severe cognitive impairment in about one-third of dystrophic patients. The brain dysfunction is independent of the muscular pathology, occurs early, and is most likely due to defects in the assembly of the Dystrophin-associated Protein Complex (DPC) during embryogenesis. We have recently described the interaction of the DPC component β-dystrobrevin with members of complexes that regulate chromatin dynamics, and suggested that β-dystrobrevin may play a role in the initiation of neuronal differentiation.

View Article and Find Full Text PDF

High expression of the chemokine receptor 4, CXCR4, associated with a negative prognosis in acute myeloid leukemia, is related to hypoxia. Because CXCR4 expression is under the post-transcriptional control of microRNA-146a in normal and leukemic monocytic cells, we first investigated the impact of hypoxia on microRNA-146a and CXCR4 expression during monocytopoiesis and in acute monocytic leukemia. We then analyzed the effects of hypoxia on drug sensitivity of CXCR4-expressing leukemic cells.

View Article and Find Full Text PDF

Background: The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation.

View Article and Find Full Text PDF

MicroRNA miR-146a and PLZF are reported as major players in the control of hematopoiesis, immune function and cancer. PLZF is described as a miR-146a repressor, whereas CXCR4 and TRAF6 were identified as miR-146a direct targets in different cell types. CXCR4 is a co-receptor of CD4 molecule that facilitates HIV-1 entry into T lymphocytes and myeloid cells, whereas TRAF6 is involved in immune response.

View Article and Find Full Text PDF

In addition to contrast human immunodeficiency virus (HIV) replication, the HIV protease inhibitors (HIV-PI) have reduced tumour incidence or clinical progression in infected patients. In this regard, we have previously shown that, independently of its anti-viral activity, the HIV-PI indinavir (IDV) directly blocks matrix metalloproteinase (MMP)-2 proteolytic activation, thus efficiently inhibiting tumour angiogenesis in vitro, in animal models, and in humans. Herein we investigated the molecular mechanism for IDV anti-angiogenic effect.

View Article and Find Full Text PDF

alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects.

View Article and Find Full Text PDF

We investigated the expression of the PLZF gene in purified human hematopoietic progenitors induced to unilineage erythroid, granulocytic or megakaryocytic differentiation and maturation in serum-free culture. PLZF is expressed in quiescent progenitors: the expression level progressively rises through megakaryocytic development, whereas it gradually declines in erythroid and granulopoietic culture. To investigate the role of PLZF in megakaryopoiesis, we transduced the PLZF gene into the erythro-megakaryocytic TF1 cell line.

View Article and Find Full Text PDF