Publications by authors named "Maria Teresa Lara Ortiz"

Cells adapt to different stress conditions, such as the antibiotics presence. This adaptation sometimes is achieved by changing relevant protein positions, of which the mutability is limited by structural constrains. Understanding the basis of these constrains represent an important challenge for both basic science and potential biotechnological applications.

View Article and Find Full Text PDF

Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10-20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function.

View Article and Find Full Text PDF

Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells.

View Article and Find Full Text PDF

Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.

View Article and Find Full Text PDF