Bioconsolidation treatment using bacterial carbonatogenesis has been proposed as an environmentally friendly strategy for the efficient preservation of damaged stones, particularly suitable for carbonate stones. The study presented here deals with the evaluation of the performance of this treatment, applied to damaged carbonate stones in two historical buildings in Spain. The methodology applied in this research serves as a reference for future similar studies.
View Article and Find Full Text PDFTo overcome the limitations of traditional conservation treatments used for protection and consolidation of stone and lime mortars and plasters, mostly based on polymers or alkoxysilanes, a novel treatment based on the activation of indigenous carbonatogenic bacteria has been recently proposed and applied both in the laboratory and . Despite very positive results, little is known regarding its effect on the evolution of the indigenous bacterial communities, specially under hot and humid tropical conditions where proliferation of microorganisms is favored, as it is the case of the Maya area. Here, we studied changes in bacterial diversity of severely degraded tuff stone and lime plaster at the archeological Maya site of Copan (Honduras) after treatment with the patented sterile M-3P nutritional solution.
View Article and Find Full Text PDFThe role of microbial processes in bioaccumulation of major and trace elements has been broadly demonstrated. However, microbial communities from marine sediments have been poorly investigated to this regard. In marine environments, particularly under high anthropogenic pressure, heavy metal accumulation increases constantly, which may lead to significant environmental issues.
View Article and Find Full Text PDFBa proxies have been broadly used to reconstruct past oceanic export production. However, the precise mechanisms underlying barite precipitation in undersaturated seawater are not known. The link between bacterial production and particulate Ba in the ocean suggests that bacteria may play a role.
View Article and Find Full Text PDFEnhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone.
View Article and Find Full Text PDFBackground: Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability.
Methodology/principal Findings: Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses.
Gypsum plasterworks and decorative surfaces are easily degraded, especially when exposed to humidity, and thus they require protection and/or consolidation. However, the conservation of historical gypsum-based structural and decorative materials by conventional organic and inorganic consolidants shows limited efficacy. Here, a new method based on the bioconsolidation capacity of carbonatogenic bacteria inhabiting the material was assayed on historical gypsum plasters and compared with conventional consolidation treatments (ethyl silicate; methylacrylate-ethylmethacrylate copolymer and polyvinyl butyral).
View Article and Find Full Text PDFStone consolidation treatments that use bacterial biomineralization are mainly based on two strategies: (1) the inoculation of a bacterial culture with proven carbonatogenic ability and/or (2) the application of a culture medium capable of activating those bacteria able to induce the formation of calcium carbonate, from amongst the bacterial community of the stone. While the second strategy has been demonstrated to be effective and, unlike first strategy, it does not introduce any exogenous microorganism into the stone, problems may arise when the bacterial community of the stone is altered, for instance by the use of biocides in the cleaning process. In this study we isolate bacteria that belong to the natural microbial community of the stone and which have proven biomineralization capabilities, with the aim of preparing an inoculum that may be used in stone consolidation treatments wherein the natural community of those stones is altered.
View Article and Find Full Text PDFThe influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type.
View Article and Find Full Text PDFMicrobially Induced Carbonate Precipitation is proposed as an environmentally friendly method to protect decayed ornamental stone and introduced in the field of preservation of Cultural Heritage. Recent conservation studies performed under laboratory conditions on non-sterile calcarenite stones have successfully reported on the application of a suitable nutritional solution, inoculated and non-inoculated with Myxococcus xanthus, as a bioconsolidation treatment. Furthermore, this procedure has been applied in situ, very recently, to selected historical buildings in Granada, Spain.
View Article and Find Full Text PDFIn this study, we investigated under laboratory conditions the bacterial communities inhabiting quarry and decayed ornamental carbonate stones before and after the application of a Myxococcus xanthus-inoculated culture medium used for consolidation of the stones. The dynamics of the community structure and the prevalence of the inoculated bacterium, M. xanthus, were monitored during the time course of the consolidation treatment (30 days).
View Article and Find Full Text PDFThe deterioration of the stone built and sculptural heritage has prompted the search and development of novel consolidation/protection treatments that can overcome the limitations of traditional ones. Attention has been drawn to bioconservation, particularly bacterial carbonatogenesis (i.e.
View Article and Find Full Text PDFThe production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I.
View Article and Find Full Text PDFBacterial precipitation of barite (BaSO(4)) under laboratory conditions is reported for the first time. The bacterium Myxococcus xanthus was cultivated in a solid medium with a diluted solution of barium chloride. Crystallization occurred as a result of the presence of live bacteria and the bacterial metabolic activity.
View Article and Find Full Text PDFIncreasing environmental pollution in urban areas has been endangering the survival of carbonate stones in monuments and statuary for many decades. Numerous conservation treatments have been applied for the protection and consolidation of these works of art. Most of them, however, either release dangerous gases during curing or show very little efficacy.
View Article and Find Full Text PDF