Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage.
View Article and Find Full Text PDFPurpose: B-cell-activating factor (BAFF) is a tumor necrosis factor superfamily member critical for the maintenance and homeostasis of normal B-cell development. It has been implicated in conferring a survival advantage to B-cell malignancies, including multiple myeloma (MM).
Experimental Design: Here, we validate the role of BAFF in the in vivo pathogenesis of MM examining BAFF and its receptors in the context of patient MM cells and show activity of anti-BAFF antibody in a severe combined immunodeficient model of human MM.
It is a current idea that carcinogenesis as well as tumor progression are dynamic processes, which involve inherited as well as somatic mutations and include a continuing adaptation to different microenvironmental conditions. There is, in fact, rising evidence that tumor cells are under a persistent stress and that autocrine as well as microenvironment-derived survival factors play a substantial role for the final outcome of the tumor development as well as for response to the anti-tumor therapy. We will review current achievements on the molecular biology of the microenvironment-derived survival signaling and therapeutical approaches, which are presently under clinical development.
View Article and Find Full Text PDF