Lactoferrin is a non-heme iron-binding glycoprotein with multiple health-beneficial functions including antimicrobial, antioxidant, anticarcinogenic, and immunomodulatory effects. There is emerging evidence that neutrophils may serve as targets of lactoferrin in vivo, and here we show how recombinant human lactoferrin (rhLf) can contribute to this regulation. Indeed, our results demonstrate that rhLf binds efficiently to human neutrophils and induces a variety of early cellular responses such as mobilization of intracellular Ca, remodeling of actin cytoskeleton, and degranulation (release of lysozyme and myeloperoxidase).
View Article and Find Full Text PDFHypochlorous acid (HOCl), one of the major precursors of free radicals in body cells and tissues, is endowed with strong prooxidant activity. In living systems, dinitrosyl iron complexes (DNIC) with glutathione ligands play the role of nitric oxide donors and possess a broad range of biological activities. At micromolar concentrations, DNIC effectively inhibit HOCl-induced lysis of red blood cells (RBCs) and manifest an ability to scavenge alkoxyl and alkylperoxyl radicals generated in the reaction of HOCl with -butyl hydroperoxide.
View Article and Find Full Text PDFDendrimers are hyperbranched polymers for delivery of therapeutic genetic material to cancer cells. The fine tuning chemical modifications of dendrimers allow for the modification of the composition. The architecture and the properties of dendrimers are key factors to improve their in vitro and in vivo properties such as biocompatibility with cells and tissues and their pharmacokinetic/pharmacodynamic behavior.
View Article and Find Full Text PDFGold nanoparticles are new kinds of nanomaterials. Their large surface-to-volume ratio, stability, excellent biocompatibility, low toxicity and functionality make them very attractive for biomedical applications. Therefore we have analyzed how dendronized gold nanoparticles interact with human alpha-1-microglobulin.
View Article and Find Full Text PDF