Publications by authors named "Maria Tenje"

The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) model for studying cancer cell invasion and interaction with endothelial cells.

View Article and Find Full Text PDF

In disciplines like toxicology and pharmacology, oxygen (O) respiration is a universal metric for evaluating the effects of chemicals across various model systems, including mammalian and microalgal cells. However, for these cells the common practice is to segregate populations into control and exposure groups, which assumes direct equivalence in their responses and does not take into account heterogeneity among individual cells. This lack of resolution impedes our ability to precisely investigate differences among experimental groups with small or limited sample sizes.

View Article and Find Full Text PDF

Accurate descriptions of the variability in single-cell oxygen consumption and its size-dependency are key to establishing more robust tissue models. By combining microfabricated devices with multiparameter identification algorithms, we demonstrate that single human hepatocytes exhibit an oxygen level-dependent consumption rate and that their maximal oxygen consumption rate is significantly lower than that of typical hepatic cell cultures. Moreover, we found that clusters of two or more cells competing for a limited oxygen supply reduced their maximal consumption rate, highlighting their ability to adapt to local resource availability and the presence of nearby cells.

View Article and Find Full Text PDF

In healthy individuals, the intestinal epithelium forms a tight barrier to prevent gut bacteria from reaching blood circulation. To study the effect of probiotics, dietary compounds and drugs on gut barrier formation and disruption, human gut epithelial and bacterial cells can be cocultured in an in vitro model called the human microbial crosstalk (HuMiX) gut-on-a-chip system. Here, we present the design, fabrication and integration of thin-film electrodes into the HuMiX platform to measure transepithelial electrical resistance (TEER) as a direct readout on barrier tightness in real-time.

View Article and Find Full Text PDF

Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip.

View Article and Find Full Text PDF

Hydrogels are used extensively as cell-culture scaffolds for both 2D and 3D cell cultures due to their biocompatibility and the ease in which their mechanical and biological properties can be tailored to mimic natural tissue. The challenge when working with hydrogel-based scaffolds is in their handling, as hydrogels that mimic e.g.

View Article and Find Full Text PDF

Left-right asymmetry is a conserved property in nature and observed in the human body, a property known as cell chirality. Cell chirality is often studied using micropatterned models. However, micropattern geometry and size often varies across different studies, making it challenging to compare results.

View Article and Find Full Text PDF

The biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret.

View Article and Find Full Text PDF

Microfluidic devices are widely used for biomedical applications but there is still a lack of affordable, reliable and user-friendly systems for transferring microfluidic chips from an incubator to a microscope while maintaining physiological conditions when performing microscopy. The presented carrier represents a cost-effective option for sustaining environmental conditions of microfluidic chips in combination with minimizing the device manipulation required for reagent injection, media exchange or sample collection. The carrier, which has the outer dimension of a standard well plate size, contains an integrated perfusion system that can recirculate the media using piezo pumps, operated in either continuous or intermittent modes (50-1000 µl/min).

View Article and Find Full Text PDF

Subcutaneous injection is one of the most common approaches for administering biopharmaceuticals unsuitable for oral delivery. However, there is a lack of methods to predict the behavior of biopharmaceuticals within the extracellular matrix of the subcutaneous tissue. In this work, we present a novel miniaturized microfluidic-based in vitro method able to investigate interactions between drug molecules and the polymers of the subcutaneous extracellular matrix.

View Article and Find Full Text PDF

Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work.

View Article and Find Full Text PDF

Photosynthetic dinoflagellates in the family Symbiodiniaceae engage in symbiosis with scleractinian corals. As coral 'bleaching' is partly governed by the thermal sensitivity of different Symbiodiniaceae lineages, numerous studies have investigated their temperature sensitivity. However, the systematic identification of single-cells with increased temperature resistance among these dinoflagellates has remained inaccessible, mostly due to a lack of technologies operating at the microscale.

View Article and Find Full Text PDF

Confocal microscopy offers a mean to extract quantitative data on spatially confined subcellular structures. Here, we provide an imaging dataset of confocal z-stacks on endothelial cells spatially confined on lines with different widths, visualizing the nucleus, F-actin, and zonula occludens-1 (ZO-1), as well as the lines. This dataset also includes confocal images of spatially confined endothelial cells challenged with different glucose conditions.

View Article and Find Full Text PDF

Biomaterial development is a long process consisting of multiple stages of design and evaluation within the context of both and testing. To streamline this process, mathematical and computational modeling displays potential as a tool for rapid biomaterial characterization, enabling the prediction of optimal physicochemical parameters. In this work, a Langmuir isotherm-based model was used to describe protein and cell adhesion on a biomimetic hydroxyapatite surface, both independently and in a one-way coupled system.

View Article and Find Full Text PDF

This work reports on an effort to decipher the alignment of brain microvasculature endothelial cells to physical constrains generated via adhesion control on hydrogel surfaces and explore the corresponding responses upon glucose level variations emulating the hypo- and hyperglycaemic effects in diabetes. We prepared hydrogels of hyaluronic acid a natural biomaterial that does not naturally support endothelial cell adhesion, and specifically functionalised RGD peptides into lines using UV-mediated linkage. The width of the lines was varied from 10 to 100 µm.

View Article and Find Full Text PDF

Organ-on-chip systems are promising new research tools in medical, pharmaceutical, and biological research. Their main benefit, compared to standard cell culture platforms, lies in the improved resemblance of the cell culture environment. A critical aspect of these systems is the ability to monitor both the cell culture conditions and biological responses of the cultured cells, such as proliferation and differentiation rates, release of signaling molecules, and metabolic activity.

View Article and Find Full Text PDF

Droplet microfluidics is a powerful method used to characterize chemical reactions at high throughput. Often detection is performed via in-line optical readout, which puts high demands on the detection system or makes detection of low concentration substrates challenging. Here, we have developed a droplet acoustofluidic chip for time-controlled reactions that can be combined with off-line optical readout.

View Article and Find Full Text PDF

This work describes a programmable heat-stage compatible with in situ microscopy for the accurate provision of spatiotemporally defined temperatures to different microfluidic devices. The heat-stage comprises an array of integrated thin-film Joule heaters and resistance temperature detectors (RTDs). External programming of the heat-stage is provided by a custom software program connected to temperature controllers and heater-sensor pairs.

View Article and Find Full Text PDF

The generation of hydrogel droplets using droplet microfluidics has emerged as a powerful tool with many applications in biology and medicine. Here, a microfluidic system to control the position of particles (beads or astrocyte cells) in hydrogel droplets using bulk acoustic standing waves is presented. The chip consisted of a droplet generator and a 380 µm wide acoustic focusing channel.

View Article and Find Full Text PDF

The reliability of conventional cell culture studies to evaluate biomaterials is often questioned, as in vitro outcomes may contradict results obtained through in vivo assays. Microfluidics technology has the potential to reproduce complex physiological conditions by allowing for fine control of microscale features such as cell confinement and flow rate. Having a continuous flow during cell culture is especially advantageous for bioactive biomaterials such as calcium-deficient hydroxyapatite (HA), which may otherwise alter medium composition and jeopardize cell viability, potentially producing false negative results in vitro.

View Article and Find Full Text PDF

The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions.

View Article and Find Full Text PDF

Introduction: Human mesenchymal stem cells (hMSCs) have a great clinical potential for tissue regeneration purposes due to its multilineage capability. Previous studies have reported that a single addition of 5-azacytidine (5-AzaC) causes the differentiation of hMSCs towards a myocardial lineage. The aim of this work was to evaluate the effect of 5-AzaC addition frequency on hMSCs priming (i.

View Article and Find Full Text PDF

Interfacing solid-state nanopores with biological systems has been exploited as a versatile analytical platform for analysis of individual biomolecules. Although clogging of solid-state nanopores due to nonspecific interactions between analytes and pore walls poses a persistent challenge in attaining the anticipated sensing efficacy, insufficient studies focus on elucidating the clogging dynamics. Herein, we investigate the DNA clogging behavior by passing double-stranded (ds) DNA molecules of different lengths through hafnium oxide(HfO)-coated silicon (Si) nanopore arrays, at different bias voltages and electrolyte pH values.

View Article and Find Full Text PDF

To bring novel biomaterials to clinical use, reliable in vitro models are imperative. The aim of this work was to develop a microfluidic tool to evaluate the biological properties of biomaterials for bone repair. Two approaches to embed medical grade titanium (TiAlV) on-chip were explored.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn755io5nqtvhmslbhlj2nb79asptq70e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once