Publications by authors named "Maria T Herrera-Abreu"

Article Synopsis
  • * The PlasmaMATCH study found that 4% of patients developed new ESR1 F404 mutations that can disrupt fulvestrant binding, leading to reduced treatment sensitivity, with various combinations of mutations affecting resistance levels.
  • * Identifying these F404 mutations provides insights into drug-specific resistance mechanisms to fulvestrant and highlights the potential for new oral estrogen receptor degraders to target complex mutant profiles in ongoing clinical development.
View Article and Find Full Text PDF

CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89).

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored the effectiveness and safety of using a combination of CDK4/6 inhibitor (palbociclib) and PI3K inhibitor (taselisib), along with the hormone therapy (fulvestrant), in treating advanced ER-positive HER2-negative breast cancer with specific genetic mutations.
  • - Results showed that the triplet therapy led to a 37.5% response rate in the targeted patient group, while both doublet and triplet therapies were well tolerated and provided durable disease control.
  • - High levels of cyclin E1 and changes in circulating tumor DNA (ctDNA) were linked to shorter progression-free survival, indicating that monitoring these factors could help refine treatment strategies for breast cancer patients.
View Article and Find Full Text PDF

Purpose: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer that is associated with a poor prognosis. We evaluated the activity of CDK4/6 inhibitors across the TNBC subtypes and investigated mechanisms of sensitivity. A panel of cell lines representative of TNBC was tested for and sensitivity to CDK4/6 inhibition.

View Article and Find Full Text PDF

Unlabelled: FGFR1 and FGFR2 are amplified in many tumor types, yet what determines response to FGFR inhibition in amplified cancers is unknown. In a translational clinical trial, we show that gastric cancers with high-level clonal FGFR2 amplification have a high response rate to the selective FGFR inhibitor AZD4547, whereas cancers with subclonal or low-level amplification did not respond. Using cell lines and patient-derived xenograft models, we show that high-level FGFR2 amplification initiates a distinct oncogene addiction phenotype, characterized by FGFR2-mediated transactivation of alternative receptor kinases, bringing PI3K/mTOR signaling under FGFR control.

View Article and Find Full Text PDF

Small-molecule inhibitors of the CDK4/6 cell-cycle kinases have shown clinical efficacy in estrogen receptor (ER)-positive metastatic breast cancer, although their cytostatic effects are limited by primary and acquired resistance. Here we report that ER-positive breast cancer cells can adapt quickly to CDK4/6 inhibition and evade cytostasis, in part, via noncanonical cyclin D1-CDK2-mediated S-phase entry. This adaptation was prevented by cotreatment with hormone therapies or PI3K inhibitors, which reduced the levels of cyclin D1 (CCND1) and other G1-S cyclins, abolished pRb phosphorylation, and inhibited activation of S-phase transcriptional programs.

View Article and Find Full Text PDF

WEE1 kinase regulates CDK1 and CDK2 activity to facilitate DNA replication during S-phase and to prevent unscheduled entry into mitosis. WEE1 inhibitors synergize with DNA-damaging agents that arrest cells in S-phase by triggering direct mitotic entry without completing DNA synthesis, resulting in catastrophic chromosome fragmentation and apoptosis. Here, we investigated how WEE1 inhibition could be best exploited for cancer therapy by performing a functional genetic screen to identify novel determinants of sensitivity to WEE1 inhibition.

View Article and Find Full Text PDF

Unlabelled: Activation of fibroblast growth factor receptors (FGFR) is a common oncogenic event. Little is known about the determinants of sensitivity to FGFR inhibition and how these may vary between different oncogenic FGFRs. Using parallel RNA interference (RNAi) genetic screens, we show that the EGF receptor (EGFR) limits sensitivity to FGFR inhibition in FGFR3-mutant and -translocated cell lines, but not in other FGFR-driven cell lines.

View Article and Find Full Text PDF

Background: Cell migration is essential during development and in human disease progression including cancer. Most cell migration studies concentrate on known or predicted components of migration pathways.

Results: Here we use data from a genome-wide RNAi morphology screen in Drosophila melanogaster cells together with bioinformatics to identify 26 new regulators of morphology and cytoskeletal organization in human cells.

View Article and Find Full Text PDF

Purpose: The oncogenic drivers of triple-negative (TN) and basal-like breast cancers are largely unknown. Substantial evidence now links aberrant signaling by the fibroblast growth factor receptors (FGFR) to the development of multiple cancer types. Here, we examined the role of FGFR signaling in TN breast cancer.

View Article and Find Full Text PDF

The docking protein Gab2 is overexpressed in several human malignancies, including breast cancer, and is associated with increased metastatic potential. Here we report that Gab2 overexpression in MCF-10A mammary epithelial cells led to delayed cell spreading, a decrease in stress fibers and mature focal adhesions, and enhanced cell migration. Expression of a Gab2 mutant uncoupled from 14-3-3-mediated negative feedback (Gab2(2xA)) led to a more mesenchymal morphology and acquisition of invasive potential.

View Article and Find Full Text PDF

Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R.

View Article and Find Full Text PDF

Background: Previous experimental studies of ventilator-induced lung injury have shown that positive end-expiratory pressure (PEEP) is protective. The authors hypothesized that the application of PEEP during volume-controlled ventilation with a moderately high tidal volume (VT) in previously healthy in vivo rats does not attenuate ventilator-induced lung injury if the peak airway pressure markedly increases during the application of PEEP.

Methods: Sixty healthy, male Sprague-Dawley rats were anesthetized and randomized to be mechanically ventilated for 4 h at (1) VT of 6 ml/kg, (2) VT of 20 ml/kg, or (3) VT of 20 ml/kg plus 10 cm H2O of PEEP.

View Article and Find Full Text PDF

Grb2-associated binder (Gab)2 functions downstream of a variety of receptor and cytoplasmic tyrosine kinases as a docking platform for specific signal transducers and performs important functions in both normal physiology and oncogenesis. Gab2 signalling is promoted by its association with specific receptors through the adaptor Grb2. However, the molecular mechanisms that attenuate Gab2 signals have remained unclear.

View Article and Find Full Text PDF

We characterized the role of protein tyrosine phosphatase (PTP)-alpha in focal adhesion (FA) formation and remodeling using wild-type and PTPalpha-deficient (PTPalpha(-/-)) cells. Compared with wild-type cells, spreading PTPalpha(-/-) fibroblasts displayed fewer leading edges and formed elongated alpha-actinin-enriched FA at the cell periphery. These features suggest the presence of slowly remodeling cell adhesions and were phenocopied in human fibroblasts in which PTPalpha was knocked down using short interfering RNA (siRNA) or in NIH-3T3 fibroblasts expressing catalytically inactive (C433S/C723S) PTPalpha.

View Article and Find Full Text PDF

Interleukin-1 (IL-1)-induced Ca2+ signaling in fibroblasts is constrained by focal adhesions. This process involves the proteintyrosine phosphatase SHP-2, which is critical for IL-1-induced phosphorylation of phospholipase Cgamma1, thereby enhancing IL-1-induced Ca2+ release and ERK activation. Currently, the mechanisms by which SHP-2 modulates Ca2+ release from the endoplasmic reticulum are not defined.

View Article and Find Full Text PDF

Interleukin-1beta (IL-1beta) mediates destruction of matrix collagens in diverse inflammatory diseases including arthritis, periodontitis, and pulmonary fibrosis by activating fibroblasts, cells that interact with matrix proteins through integrin-based adhesions. In vitro, IL-1beta signaling is modulated by focal adhesions, supramolecular protein complexes that are enriched with tyrosine kinases and phosphatases. We assessed the importance of tyrosine phosphatases in regulating cell-matrix interactions and IL-1beta signaling.

View Article and Find Full Text PDF

Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2.

View Article and Find Full Text PDF

Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation.

View Article and Find Full Text PDF