Publications by authors named "Maria T Clarke"

In utero gene editing with mRNA-based therapeutics has the potential to revolutionize the treatment of neurodevelopmental disorders. However, a critical bottleneck in clinical application has been the lack of mRNA delivery vehicles that can efficiently transfect cells in the brain. In this report, we demonstrate that in utero intracerebroventricular (ICV) injection of densely PEGylated lipid nanoparticles (ADP-LNPs) containing an acid-degradable PEG-lipid can safely and effectively deliver mRNA for gene editing enzymes to the fetal mouse brain, resulting in successful transfection and editing of brain cells.

View Article and Find Full Text PDF

Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S.

View Article and Find Full Text PDF

Angelman syndrome (AS), an early-onset neurodevelopmental disorder characterized by abnormal gait, intellectual disabilities, and seizures, occurs when the maternal allele of the UBE3A gene is disrupted, since the paternal allele is silenced in neurons by the UBE3A antisense (UBE3A-AS) transcript. Given the importance of early treatment, we hypothesized that prenatal delivery of an antisense oligonucleotide (ASO) would downregulate the murine Ube3a-AS, resulting in increased UBE3A protein and functional rescue. Using a mouse model with a Ube3a-YFP allele that reports on-target ASO activity, we found that in utero, intracranial (IC) injection of the ASO resulted in dose-dependent activation of paternal Ube3a, with broad biodistribution.

View Article and Find Full Text PDF