Publications by authors named "Maria Strantza"

The rapid collection and indexing of electron diffraction patterns as produced via electron backscatter diffraction (EBSD) has enabled crystallographic orientation and structural determination, as well as additional property-determining strain and dislocation density information with increasing speed, resolution, and efficiency. Pattern indexing quality is reliant on the noise of the collected electron diffraction patterns, which is often convoluted by sample preparation and data collection parameters. EBSD acquisition is sensitive to many factors and thus can result in low confidence index (CI), poor image quality (IQ), and improper minimization of fit, which can result in noisy datasets and misrepresent the microstructure.

View Article and Find Full Text PDF

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM.

View Article and Find Full Text PDF

Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens.

View Article and Find Full Text PDF

Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring.

View Article and Find Full Text PDF

Selective laser melting (SLM) is an additive manufacturing (AM) process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance.

View Article and Find Full Text PDF

During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs.

View Article and Find Full Text PDF

Background And Purpose: To evaluate the added value of MRI with respect to peripheral quantitative computed tomography (pQCT) and dual energy X-ray absorptiometry (DXA) for predicting femoral strength.

Material And Methods: Bone mineral density (BMD) of eighteen femur specimens was assessed with pQCT, DXA, and MRI (using ultrashort echo times (UTE) and the MicroView software). Subsequently biomechanical testing was performed to assess failure load.

View Article and Find Full Text PDF

The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load.

View Article and Find Full Text PDF

Cortical bone is a highly heterogeneous material at the microscale and has one of the most complex structures among materials. Application of elastic wave techniques to this material is thus very challenging. In such media the initial excitation energy goes into the formation of elastic waves of different modes.

View Article and Find Full Text PDF