Using a water-in-oil microemulsion system, silica nanoparticles containing superparamagnetic iron oxide (SPIO) crystals have been prepared and characterized. With this method, the loading of iron oxide crystals, the thickness of the silica shells, and the overall particle sizes are tunable. Moving from low to high water concentration, within the microemulsion region, resulted in a gradual shift from larger particles, ca.
View Article and Find Full Text PDFOptical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process.
View Article and Find Full Text PDFThe consequences of including amide bonds into the structure of short-chain nonionic surfactants have been studied. Of particular interest were the possible effects of the hydrogen bonding ability of the amide group on the micellar shape. The aggregate structure and hydration of two different amide-containing surfactants, C7H15CO-NH-(CH2CH2O)4H and C7H15CO-(NH-C3H6-CO)2N(CH3)2, were investigated using NMR diffusometry (pulsed gradient spin echo NMR) as the main technique.
View Article and Find Full Text PDFSmall unilamellar vesicles (approximately 100 nm in diameter) form spontaneously in aqueous mixtures of histidine and sodium dodecyl benzenesulfonate. By manipulating pH, a gradual transition from micelles to vesicles to bilayers to precipitate is observed. The self-assembly of vesicles occurs over a wide range of compositions when the solution pH is lower than 6.
View Article and Find Full Text PDFMixtures of hydrophobically modified hydroxyethyl cellulose (HMHEC) and alkali-sensitive cleavable betaine ester surfactants have been studied by viscometry, 1H NMR, absorbance measurements, and birefringence determinations. Before the hydrolysis, the surfactants behaved as conventional nondegradable surfactants in terms of the effect on the viscosity of increasing surfactant concentration. As the surfactants were hydrolyzed, systems with time-dependent viscosity were obtained.
View Article and Find Full Text PDFPrevious studies have shown that the alkaline hydrolysis of cleavable ester surfactants is strongly affected by aggregation. The alkaline hydrolysis of the cationic species decyl betainate (DB) is strongly enhanced by micellization, whereas the nonionic species tetra(ethylene glycol)mono-n-octanoate (TEO) is virtually protected when residing in aggregates. In the present work, mixtures of DB and TEO were studied at concentrations above the critical micelle concentration, and the rate of hydrolysis of each surfactant in the presence of the other was assessed.
View Article and Find Full Text PDFA linear and a branched nonionic cleavable surfactants containing a carbonate bond have been prepared from tetra(ethylene glycol) and an alkylchloroformate. The stability of these carbonate surfactants was determined by investigating their hydrolysis and biodegradability characteristics. The hydrolysis was catalyzed by alkali or enzymes (esterase from porcine liver and lipases from Mucor miehei and Candida antarctica B) and was monitored using 1H NMR.
View Article and Find Full Text PDFUnexpected colloidal assemblies form in aqueous mixtures of sodium dodecylbenzenesulfonate (SDBS) with the following imidazoline compounds: 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (V-44, which is a commonly used free-radical initiator), 2,2'-tetramethylenedi-2-imidazoline (TMI), and the main recombination product (RP) from the decomposition of V-44. All of these imidazoline compounds act as hydrotropes. As the molar ratio of imidazoline to SDBS increases, a gradual transition from micelles to vesicles to bilayers to precipitate is observed.
View Article and Find Full Text PDF