Publications by authors named "Maria Stella Valle"

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder, characterized by impairments in social interaction and communication with restricted and repetitive behavior. Postural and motor disturbances occur more often in ASD, in comparison to typically developing subjects, affecting the quality of life. Linear and non-linear indexes derived from the trajectory of the center of pressure (COP) while subjects stand on force platforms are commonly used to assess postural stability.

View Article and Find Full Text PDF

Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients.

View Article and Find Full Text PDF

Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions.

View Article and Find Full Text PDF

Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia.

View Article and Find Full Text PDF

Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells.

View Article and Find Full Text PDF

Background: Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG.

View Article and Find Full Text PDF

This study was undertaken to set a novel developmental screening test for autism spectrum disorder (ASD) using the Griffiths Scales of Child Development (Griffith III) (Green et al., 2016; Stroud et al., 2016), in order to intercept the early atypical developmental patterns indicating ASD risk in the first 3 years of age.

View Article and Find Full Text PDF

Background: The timing of the effects of botulinum toxin A on spastic muscles is not yet fully clarified. The goal of this study was to follow the temporal changes of surface electromyographic activity of lower limb muscles during walking, after a therapeutic dose of botulinum toxin A injected into the calf muscles of children with spastic cerebral palsy.

Methods: A group of children with spastic equinus foot was administered botulinum toxin A into the gastrocnemius medialis and lateralis muscles.

View Article and Find Full Text PDF

Over the last few years, we have experienced the infection generated by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) often resulting in an exaggerated immune reaction and systemic inflammation. The preferred treatments against SARS-CoV-2 were those that mitigated immunological/inflammatory dysfunction. A variety of observational epidemiological studies have reported that vitamin D deficiency is often a crucial factor in many inflammatory diseases and autoimmune diseases, as well as the susceptibility to contract infectious diseases, including acute respiratory infections.

View Article and Find Full Text PDF

Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebrotendinous xanthomatosis is a rare disorder that affects how fat is stored in the body, which can cause problems with movement and balance.
  • A study looked at a 36-year-old man with this condition to measure how well he could stand still in different foot positions and while either looking or not looking.
  • The results showed he had major balance problems, especially when his feet were close together, and the scientists plan to help him improve his stability with special exercises.
View Article and Find Full Text PDF

Numerous studies have shown that microglia are capable of producing a wide range of chemokines to promote inflammatory processes within the central nervous system (CNS). These cells share many phenotypical and functional characteristics with macrophages, suggesting that microglia participate in innate immune responses in the brain. Neuroinflammation induces neurometabolic alterations and increases in energy consumption.

View Article and Find Full Text PDF

Studies on gait symmetry in healthy population have mainly been focused on small range of age categories, neglecting Teenagers (13-18 years old) and Middle-Aged persons (51-60 years old). Moreover, age-related effects on gait symmetry were found only when the symmetry evaluation was based on whole-body acceleration than on spatiotemporal parameters of the gait cycle. Here, we provide a more comprehensive analysis of this issue, using a Symmetry Index (SI) based on whole-body acceleration recorded on individuals aged 6 to 84 years old.

View Article and Find Full Text PDF

There is a fine balance in maintaining healthy microbiota composition, and its alterations due to genetic, lifestyle, and environmental factors can lead to the onset of respiratory dysfunctions such as chronic obstructive pulmonary disease (COPD). The relationship between lung microbiota and COPD is currently under study. Little is known about the role of the microbiota in patients with stable or exacerbated COPD.

View Article and Find Full Text PDF

Skeletal muscle dysfunction is frequently associated with chronic obstructive pulmonary disease (COPD), which is characterized by a permanent airflow limitation, with a worsening respiratory disorder during disease evolution. In COPD, the pathophysiological changes related to the chronic inflammatory state affect oxidant-antioxidant balance, which is one of the main mechanisms accompanying extra-pulmonary comorbidity such as muscle wasting. Muscle impairment is characterized by alterations on muscle fiber architecture, contractile protein integrity, and mitochondrial dysfunction.

View Article and Find Full Text PDF

The Timed Up and Go (TUG) test quantifies physical mobility by measuring the total performance time. In this study, we quantified the single TUG subcomponents and, for the first time, explored the effects of gait cycle and pelvis asymmetries on them. Transfemoral (TF) and transtibial (TT) amputees were compared with a control group.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) produces skeletal muscle atrophy and weakness, leading to impairments of exercise performance. The mechanical work needed for movement execution is also provided by the passive tension developed by musculoarticular connective tissue. To verify whether COPD affects this component, the passive viscoelastic properties of the knee joint were evaluated in 11 patients with COPD and in 11 healthy individuals.

View Article and Find Full Text PDF

A greater proportion of glycolytic muscle fibers is a manifestation of skeletal muscle dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Here, we propose to use the spectral analysis of the electromyographic signal as a non-invasive approach to investigate the fiber muscle composition in COPD. We recorded the electromyographic activity of Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM) and Biceps Femoris (BF) muscles, in ten patients and ten healthy individuals, during non-fatiguing, flexion-extension leg movements.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis.

View Article and Find Full Text PDF

The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility.

View Article and Find Full Text PDF

Purpose: An age-related decline in anticipatory postural mechanisms has been reported during gait initiation; however, it is unclear whether such decline may jeopardize whole-body stability following unexpected balance perturbations. This study aimed to compare young and older individuals' ability to generate postural responses and preserve stability in response to external waist perturbations delivered within gait initiation.

Methods: Ten young and ten older participants performed 10 gait initiation trials followed by 48 unperturbed and 12 perturbed trials in a random order.

View Article and Find Full Text PDF

Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy.

View Article and Find Full Text PDF

Benefits from post-training memory processing have been observed in learning many procedural skills. Here, we show that appropriate offline periods produce a performance gain during learning to stand on a multiaxial balance board. The tilt angle and the area of sway motion of the board were much more reduced in participants performing a training spaced by an interval of one day with respect to participants executing the same amount of practice over a concentrated period.

View Article and Find Full Text PDF