Publications by authors named "Maria Soledad Callen"

Tire pyrolysis oil (TPO) is one of the most interesting products derived from the pyrolysis of end-of-life tires. Among others, it contains valuable chemicals, such as benzene, toluene, ethylbenzene, and xylene (BTEX), as well as limonene. In order to recover these chemicals, a pilot-scale distillation plant has been designed, erected, and operated using TPO derived from an industrial-scale pyrolysis plant.

View Article and Find Full Text PDF

Pyrolysis coupled to either thermal or catalytic cracking of mattress foam waste was performed in a laboratory-scale facility consisting of a fixed-bed reactor joined to a tubular cracking reactor. The results showed a great potential for the production of syngas specially at high cracking temperatures. Particularly, fixing 800 °C in the cracking reactor, a CO and CH rich gas with a remarkable amount of H was obtained.

View Article and Find Full Text PDF

Pyrolysis combined to either thermal cracking or catalytic cracking of municipal solid waste was performed in a laboratory-scale facility consisting of a fixed-bed reactor followed by a tubular cracking reactor. The results showed great potential for the production of syngas. The incorporation of inexpensive and widely available dolomite in the cracking reactor (with a constant feedstock to calcined dolomite ratio of 5:1) favoured the catalytic cracking of the primary pyrolysis products towards H and CO in a temperature range of 800-900 °C.

View Article and Find Full Text PDF

The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface.

View Article and Find Full Text PDF

One year sampling (2011-2012) campaign of airborne PM2.5-bound PAH was performed in Zaragoza, Spain. A source apportionment of total PAH by Positive Matrix Factorization (PMF) was applied in order to quantify potential PAH pollution sources.

View Article and Find Full Text PDF

Benzo(a)pyrene (BaP) is one of the most dangerous PAH due to its high carcinogenic and mutagenic character. Because of this reason, the Directive 2004/107/CE of the European Union establishes a target value of 1 ng/m(3) of BaP in the atmosphere. In this paper, the main aim is to estimate the BaP concentrations in the atmosphere by using last generation of air quality dispersion models with the inclusion of the transport, scavenging and deposition processes for the BaP.

View Article and Find Full Text PDF

Lead is a toxic trace element which produces harmful effects on human health, even at low concentrations, and it can be useful as ambient pollution tracer because the relative abundance of its four stable isotopes (204, 206, 207 and 208) depends on the emission source. This study was focused on the lead concentrations and isotope ratios in the PM10 of Zaragoza, in order to determine the main Pb pollution sources and to check whether the influence of the prohibition of leaded fuel was worthwhile. Two sampling campaigns from 2001 until 2004, the first one in which leaded gasoline was still effective and the second one with the phase-out, were carried out by using a high-volume air sampler able to trap the particulate matter equal to or less than 10 microm (PM10) on Teflon-coated fibre glass filters.

View Article and Find Full Text PDF