Memory encoding and retrieval rely on specific interactions across multiple brain areas. Although connections between individual brain areas have been extensively studied, the anatomical and functional specificity of neuronal circuit organization underlying information transfer across multiple brain areas remains unclear. Here, we combine transsynaptic viral tracing, optogenetic manipulations, and calcium dynamics recordings to dissect the multisynaptic functional connectivity of the amygdala.
View Article and Find Full Text PDFThe ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes.
View Article and Find Full Text PDFThe behaviour of an animal is determined by metabolic, emotional and social factors. Depending on its state, an animal will focus on avoiding threats, foraging for food or on social interactions, and will display the appropriate behavioural repertoire. Moreover, survival and reproduction depend on the ability of an animal to adapt to changes in the environment by prioritizing the appropriate state.
View Article and Find Full Text PDFThe ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity.
View Article and Find Full Text PDFProtein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood.
View Article and Find Full Text PDFMemory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones.
View Article and Find Full Text PDFIn contextual conditioning, a complex pattern of information is processed to associate the characteristics of a particular place with incentive or aversive reinforcements. This type of learning has been widely studied in mammals, but studies of other taxa are scarce. The context-signal memory (CSM) paradigm of the crab Chasmagnathus has been extensively used as a model of learning and memory.
View Article and Find Full Text PDFBackground: Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form.
View Article and Find Full Text PDFGene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized.
View Article and Find Full Text PDFConsolidation of long-term memory requires the activation of several transduction pathways that lead to post-translational modifications of synaptic proteins and to regulation of gene expression, both of which promote stabilization of specific changes in the activated circuits. In search of the molecular mechanisms involved in such processes, we used the context-signal associative learning paradigm of the crab Chasmagnathus. In this model, we studied the role of some molecular mechanisms, namely cAMP-dependent protein kinase (PKA), extracellular-signal-regulated kinase (ERK), the nuclear factor kappa B (NF-kappaB) transcription factor, and the role of synaptic proteins such as amyloid beta precursor protein, with the object of describing key mechanisms involved in memory processing.
View Article and Find Full Text PDF