In the context of deep learning models, attention has recently been paid to studying the surface of the loss function in order to better understand training with methods based on gradient descent. This search for an appropriate description, both analytical and topological, has led to numerous efforts in identifying spurious minima and characterize gradient dynamics. Our work aims to contribute to this field by providing a topological measure for evaluating loss complexity in the case of multilayer neural networks.
View Article and Find Full Text PDFThe increasing penetration of distributed generation (DG) across power distribution networks (DNs) is forcing distribution system operators (DSOs) to improve the voltage regulation capabilities of the system. The increase in power flows due to the installation of renewable plants in unexpected zones of the distribution grid can affect the voltage profile, even causing interruptions at the secondary substations (SSs) with the voltage limit violation. At the same time, widespread cyberattacks across critical infrastructure raise new challenges in security and reliability for DSOs.
View Article and Find Full Text PDF