Publications by authors named "Maria Seyerl"

Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34(+) hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo.

View Article and Find Full Text PDF

The epithelial signaling protein and transcriptional regulator β-catenin has recently been implicated in hematopoietic dendritic cell (DC) differentiation as well as in DC-mediated tolerance. We here observed that epidermal Langerhans cells (LCs) but not interstitial/dermal DCs express detectable β-catenin. LCs are unique among the DC family members in that LC networks critically depend on epithelial adhesion molecules as well as on the cytokine transforming growth factor-β1 (TGF-β1).

View Article and Find Full Text PDF

Chemokine-like factor 1 (CKLF1) was the first member of the CKLF-like MARVEL transmembrane domain containing member (CMTM) family to be discovered. Its expression level is increased clearly in peripheral blood lymphocytes upon phytohemagglutinin stimulation, but little is known about the expression and function of CKLF1 in dendritic cells (DCs), which are the most potent antigen-presenting cells. In the present study, we showed that CKLF1 was highly expressed in monocytes.

View Article and Find Full Text PDF

IL-35 is a heterodimer of EBV-induced gene 3 and of the p35 subunit of IL-12, and recently identified as an inhibitory cytokine produced by natural Treg in mice, but not in humans. Here we demonstrate that DC activated by human rhinoviruses (R-DC) induce IL-35 production and release, as well as a suppressor function in CD4(+) and CD8(+) T cells derived from human peripheral blood but not in naïve T cells from cord blood. The induction of IL-35-producing T cells by R-DC was FOXP3-independent, but blocking of B7-H1 (CD274) and sialoadhesin (CD169) on R-DC with mAb against both receptors prevented the induction of IL-35.

View Article and Find Full Text PDF

Dendritic cells (DCs) are the key cell type in the regulation of an adaptive immune response. Under inflammatory conditions monocytes can give rise to immunostimulatory DCs, depending on microenvironmental stimuli. Here we show that oxidized phospholipids (Ox-Pls), which are generated during inflammatory reactions, dysregulate the differentiation of DCs.

View Article and Find Full Text PDF

Dendritic cells (DCs) use pattern recognition receptors to sense invading viruses and triggering of these receptors induces a maturation program. Human rhinoviruses (HRVs) belong to the family of Picornaviridae, which have a single-stranded, coding RNA genome. Because HRV does not replicate in DCs, we used genomic RNA from HRV in this study to analyze the impact of natural occurring viral ssRNA on DC function.

View Article and Find Full Text PDF

The activation of neutrophil granulocytes has to be carefully controlled to balance desired activity against invading pathogens while avoiding overwhelming activation leading to host tissue damage. We now show that phospholipids are potential key players in this process by either enhancing or dampening the production of reactive oxygen species (ROS) during the oxidative burst. Unoxidized phospholipids induce the production of ROS, and they also work synergistically with FMLP in potentiating the oxidative burst in neutrophil granulocytes.

View Article and Find Full Text PDF

Lipids are key regulators of immune responses. In this study we investigated the direct impact of oxidized phospholipids (ox-PL) on T cell activation and function. We could demonstrate that ox-PL strongly inhibit proliferation of purified human T cells induced with anti-CD3/CD28 or anti-CD3/CD63 mAb, whereas proliferation of naive T cells from human cord blood was not affected by ox-PL.

View Article and Find Full Text PDF