Publications by authors named "Maria Serrano-Vega"

Two interesting new X-ray structures of negative allosteric modulator (NAM) ligands for the mGlu receptor, M-MPEP (3) and fenobam (4), are reported. The new structures show how the binding of the ligands induces different receptor water channel conformations to previously published structures. The structure of fenobam, where a urea replaces the acetylenic linker in M-MPEP and mavoglurant, reveals a binding mode where the ligand is rotated by 180° compared to a previously proposed docking model.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are important therapeutic targets since more than 40% of the drugs on the market exert their action through these proteins. To decipher the molecular mechanisms of activation and signaling, GPCRs often need to be isolated and reconstituted from a detergent-solubilized state into a well-defined and controllable lipid model system. Several methods exist to reconstitute membrane proteins in lipid systems but usually the reconstitution success is tested at the end of the experiment and often by an additional and indirect method.

View Article and Find Full Text PDF

The thermostability of an integral membrane protein (MP) in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals that are suitable for structure determination. However, many mammalian MPs are too unstable for crystallization. We developed a thermostabilization strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters.

View Article and Find Full Text PDF

Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.

View Article and Find Full Text PDF

Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders.

View Article and Find Full Text PDF

Fats based on stearic acid could be a healthier alternative to existing oils especially hydrogenated fractions of oils or palm, but only a few non-tropical species produce oils with these characteristics. In this regard, newly developed high stearic oil seed crops could be a future source of fats and hard stocks rich in stearic and oleic fatty acids. These oil crops have been obtained either by breeding and mutagenesis or by suppression of desaturases using RNA interference.

View Article and Find Full Text PDF

The β(1)-adrenergic receptor (β(1)AR) is a G-protein-coupled receptor whose inactive state structure was determined using a thermostabilized mutant (β(1)AR-M23). However, it was not thought to be in a fully inactivated state because there was no salt bridge between Arg139 and Glu285 linking the cytoplasmic ends of transmembrane helices 3 and 6 (the R(3.50) - D/E(6.

View Article and Find Full Text PDF

Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts.

View Article and Find Full Text PDF

In previous work we described six point mutations that thermostabilised the turkey beta(1)-adrenergic receptor (tbeta(1)AR). The thermostable mutant, tbeta(1)AR-m23, had an apparent T(m) 21 degrees C higher than the native protein when solubilized in dodecylmaltoside (DDM) and, in addition, was significantly more stable in short chain detergents, which allowed its crystallization and structure determination. Identification of thermostabilizing mutations in tbeta(1)AR was performed by systematic mutagenesis followed by expressing and assaying each of the 318 mutants for their thermostability.

View Article and Find Full Text PDF

Structural studies on G-protein-coupled receptors have been hampered for many years by their instability in detergent solution and by the number of potential conformations that receptors can adopt. Recently, the structures of the beta(1) and beta(2) adrenergic receptors and the adenosine A(2a) receptor were determined in the antagonist-bound state, a receptor conformation that is thought to be more stable than the agonist-bound state. In contrast to these receptors, the neurotensin (NT) receptor NTS1 is much less stable in detergent solution.

View Article and Find Full Text PDF

Structure determination of G protein-coupled receptors is still in its infancy and many factors affect whether crystals are obtained and whether the diffraction is of sufficient quality for structure determination. We recently solved the structure of a thermostabilised turkey beta 1-adrenergic receptor by crystallization in the presence of the detergent octylthioglucoside. Three factors were essential for this success.

View Article and Find Full Text PDF

Structural studies on mammalian integral membrane proteins have long been hampered by their instability in detergent. This is particularly true for the agonist conformation of G protein-coupled receptors (GPCRs), where it is thought that the movement of helices that occurs upon agonist binding results in a looser and less stable packing in the protein. Here, we show that mutagenesis coupled to a specific selection strategy can be used to stabilize the agonist and antagonist conformations of the adenosine A(2a) receptor.

View Article and Find Full Text PDF

G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A resolution crystal structure of a beta(1)-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol.

View Article and Find Full Text PDF

There are approximately 350 non-odorant G protein-coupled receptors (GPCRs) encoded by the human genome, many of which are predicted to be potential therapeutic targets, but there are only two structures available to represent the whole of the family. We hypothesized that improving the detergent stability of these receptors and simultaneously locking them into one preferred conformation will greatly improve the chances of crystallization. We developed a generic strategy for the isolation of detergent-solubilized thermostable mutants of a GPCR, the beta1-adrenergic receptor.

View Article and Find Full Text PDF

Information obtained in recent years regarding the enzymes involved in FA synthesis can now be applied to develop novel sunflower lines by incorporating enzymes with specific characteristics into lines with a defined background. We have generated three highly saturated mutant lines in this way and characterized their FA content. The new high-palmitic, low-palmitoleic lines CAS-18 and CAS-25, the latter on a high-oleic background, have been selected from the high-stearic mutant CAS-3 by introducing a deficient stearic acid desaturase in a high-palmitic background from the previously developed mutant lines CAS-5 and CAS-12, respectively.

View Article and Find Full Text PDF