Background: N-Methyl-D-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions.
View Article and Find Full Text PDFIn recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning, and memory performances are deeply modulated by social, motor, and sensorial experiences. Fractalkine/CX(3)CL1 is a transmembrane chemokine abundantly expressed in the brain by neurons, where it modulates glutamatergic transmission and long-term plasticity processes regulating the intercellular communication between glia and neurons, being its specific receptor CX(3)CR1 expressed by microglia. In this paper we investigated the role of CX(3)CL1/CX(3)CR1 signaling on experience-dependent hippocampal plasticity processes.
View Article and Find Full Text PDFMicroglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice.
View Article and Find Full Text PDFWe have examined how the chemokine fractalkine/CX(3)CL1 influences long-term potentiation (LTP) in CA1 mouse hippocampal slices. Field potentials (fEPSPs) were recorded upon electrical stimulation of Schaffer collaterals. It was found that application of CX(3)CL1 inhibits LTP when present during the critical induction period.
View Article and Find Full Text PDF