Cantú syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe 1 CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle and to model the consequences of altered KATP channels in CS gut.
View Article and Find Full Text PDFMissense variants in KCNJ11 and ABCC8, which encode the KIR6.2 and SUR1 subunits of the β-cell KATP channel, have previously been implicated in type 2 diabetes, neonatal diabetes, and hyperinsulinemic hypoglycemia of infancy (HHI). To determine whether variation in these genes affects risk for type 2 diabetes or increased birth weight as a consequence of fetal hyperinsulinemia in Pima Indians, missense and common noncoding variants were analyzed in individuals living in the Gila River Indian Community.
View Article and Find Full Text PDFObjective: Neonatal diabetes mellitus (NDM) can be caused by gain-of-function ATP-sensitive K(+) (K(ATP)) channel mutations. This realization has led to sulfonylurea therapy replacing insulin injections in many patients. In a murine model of K(ATP)-dependent NDM, hyperglycemia and consequent loss of β-cells are both avoided by chronic sulfonylurea treatment.
View Article and Find Full Text PDFMurine ventricular and atrial ATP-sensitive potassium (K(ATP)) channels contain different sulfonylurea receptors (ventricular K(ATP) channels are Kir6.2/SUR2A complexes, while atrial K(ATP) channels are Kir6.2/SUR1 complexes).
View Article and Find Full Text PDFThe role of metabolism-excitation coupling in insulin secretion has long been apparent, but in recent years, in parallel with studies of human hyperinsulinism and diabetes, genetic manipulation of proteins involved in glucose transport, metabolism, and excitability in mice has brought the central importance of this pathway into sharp relief. We focus on these animal studies and how they provide important insights into not only metabolic and electrical regulation of insulin secretion, but also downstream consequences of alterations in this pathway and the etiology and treatment of insulin-secretion diseases in humans.
View Article and Find Full Text PDFATP-insensitive K(ATP) channel mutations cause neonatal diabetes mellitus (NDM). To explore the mechanistic etiology, we generated transgenic mice carrying an ATP-insensitive mutant K(ATP) channel subunit. Constitutive expression in pancreatic beta cells caused neonatal hyperglycemia and progression to severe diabetes and growth retardation, with loss of islet insulin content and beta cell architecture.
View Article and Find Full Text PDFBackground: Pancreatic beta-cell ATP-sensitive potassium (K ATP) channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice) show an unexpected insulin undersecretory phenotype.
View Article and Find Full Text PDFThe lack of pathological consequences of cardiac ATP-sensitive potassium channel (K(ATP)) channel gene manipulation is in stark contrast to the effect of similar perturbations in the pancreatic beta-cell. Because the pancreatic and cardiac channel share the same pore-forming subunit (Kir6.2), the different effects of genetic manipulation likely reflect, at least in part, the tissue-specific expression of the regulatory subunit (SUR1 in pancreas vs.
View Article and Find Full Text PDFReducing the ATP sensitivity of the sarcolemmal ATP-sensitive K(+) (K(ATP)) channel is predicted to lead to active channels in normal metabolic conditions and hence cause shortened ventricular action potentials and reduced myocardial inotropy. We generated transgenic (TG) mice that express an ATP-insensitive K(ATP) channel mutant [Kir6.2(deltaN2-30,K185Q)] under transcriptional control of the alpha-myosin heavy chain promoter.
View Article and Find Full Text PDF