Human African trypanosomiasis is among the World Health Organization's designated neglected tropical diseases. Repurposing strategies are often employed in academic drug discovery programs due to financial limitations, and in this instance, we used human kinase inhibitor chemotypes to identify substituted 4-aminoazaindoles, exemplified by . Structure-activity and structure-property relationship analysis, informed by cheminformatics, identified as a potent inhibitor of growth.
View Article and Find Full Text PDFHerein, we describe the hit optimization of a novel diarylthioether chemical class found to be active against ; the parasite responsible for Chagas disease. The hit compound was discovered through a whole-cell phenotypic screen and as such, the mechanism of action for this chemical class is unknown. Our investigations led to clear structure-activity relationships and the discovery of several analogues with high potency.
View Article and Find Full Text PDFAs a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs.
View Article and Find Full Text PDFBackground: Diarrhoea remains one of the leading causes of childhood mortality globally. Recent epidemiological studies conducted in low-middle income countries (LMICs) identified spp. as the first and second most predominant agent of dysentery and moderate diarrhoea, respectively.
View Article and Find Full Text PDFNeglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of , the parasite that causes HAT, through a high-throughput screen.
View Article and Find Full Text PDFHuman African trypanosomiasis is a neglected tropical disease (NTD) that is fatal if left untreated. Although approximately 13 million people live in moderate- to high-risk areas for infection, current treatments are plagued by problems with safety, efficacy, and emerging resistance. In an effort to fill the drug development pipeline for HAT, we have expanded previous work exploring the chemotype represented by the compound , with a particular focus on improvement of absorption, distribution, metabolism and elimination (ADME) properties.
View Article and Find Full Text PDFPlasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the β5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT), or sleeping sickness, is caused by the protozoan parasite and transmitted through the bite of infected tsetse flies. The disease is considered fatal if left untreated. To identify new chemotypes against , previously we identified 797 potent kinase-targeting inhibitors grouped into 59 clusters plus 53 singleton compounds with at least 100-fold selectivity over HepG2 cells.
View Article and Find Full Text PDFHirsutellide A is nature-derived cyclic hexadepsipeptide with reported antimycobacterial and antiplasmodial activities. To verify its structure, hirsutellide A was synthesized following a solution-phase peptide synthesis approach. A detailed analysis of the H and C NMR spectra of the synthesized compound revealed structural variation from what had been originally assigned for hirsutellide A, despite the use of identical building blocks.
View Article and Find Full Text PDFMalaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 () showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen.
View Article and Find Full Text PDFIn the course of optimizing a novel indazole sulfonamide series that inhibits β-ketoacyl-ACP synthase (KasA) of , a mutagenic aniline metabolite was identified. Further lead optimization efforts were therefore dedicated to eliminating this critical liability by removing the embedded aniline moiety or modifying its steric or electronic environment. While the narrow SAR space against the target ultimately rendered this goal unsuccessful, key structural knowledge around the binding site of this underexplored target for TB was generated to inform future discovery efforts.
View Article and Find Full Text PDFFrom a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3β, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in which showed selectivity for over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in being progressed into an efficacy study in mice.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT) is a neglected tropical disease caused by infection with either of two subspecies of the parasite . Due to a lack of economic incentive to develop new drugs, current treatments have severe limitations in terms of safety, efficacy, and ease of administration. In an effort to develop new HAT therapeutics, we report the structure-activity relationships around for a series of benzoxazepinoindazoles previously identified through a high-throughput screen of human kinase inhibitors, and the subsequent experiments for HAT.
View Article and Find Full Text PDFβ-Lactams represent perhaps the most important class of antibiotics yet discovered. However, despite many years of active research, none of the currently approved drugs in this class combine oral activity with long duration of action. Recent developments suggest that new β-lactam antibiotics with such a profile would have utility in the treatment of tuberculosis.
View Article and Find Full Text PDFA convenient solid phase peptide synthetic (SPPS) route is reported for the preparation of antimycobacterial wollamides. The method is based on on-resin head-to-tail cyclization and is fast, efficient and amenable to automation. The in vitro antimycobacterial activities of the newly synthesized wollamides were evaluated against M.
View Article and Find Full Text PDFK13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P.
View Article and Find Full Text PDFWollamide B is a cationic antimycobacterial cyclohexapeptide that exhibits activity against Mycobacterium bovis (M. bovis) (IC50 of 3.1 μM).
View Article and Find Full Text PDFPhenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography.
View Article and Find Full Text PDFMalaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs.
View Article and Find Full Text PDFAn experimental model of artificially perfused and mechanically ventilated lung has been applied to compare the kinetic behaviour of levofloxacin, cefepime and netilmicin in this body tissue. The study has been performed to explore the usefulness of the isolated lung technique in the pharmacokinetic field, particularly to study the disposition of antibiotics in pulmonary tissue. The lung was perfused with Krebs-Henseleit medium containing 3% bovine albumin at a flow rate of 5 mL min(-1).
View Article and Find Full Text PDFThe objective of this study was to examine the influence of the rate at which the tissue is perfused on the disposition of levofloxacin and netilmicin in the pulmonary tissue, using an experimental model of the isolated rat lung. Analysis of the results was performed using two pharmacokinetic approaches. By stochastic analysis of outflow curves the corresponding statistical moments and derived distribution coefficient were calculated.
View Article and Find Full Text PDF