Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders.
View Article and Find Full Text PDFMRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells.
View Article and Find Full Text PDFDual binding modes: Combined empirical and computational studies of a series of compounds showed adenine and 1-benzyl-4-(dimethylamino)pyridinium fragments to function most efficiently in binding CHOKα1, and also determined how the latter fragment interacts with the choline binding site through two different binding modes. These data provide a basis for the future design of better and more selective inhibitors.
View Article and Find Full Text PDFApplying a CHOK hold: Combined experimental and computational studies of the binding mode of a rationally designed inhibitor of the dimeric choline kinase α1 (CHOKα1) explain the molecular mechanism of negative cooperativity (see scheme) and how the monomers are connected. The results give insight into how the symmetry of the dimer can be partially conserved despite a lack of conservation in the static crystal structures.
View Article and Find Full Text PDF