Background: Abdominal aortic aneurysms (AAAs) are focal dilatations of the abdominal aorta that expand progressively, increasing their risk of rupture. Rupture of an AAA is associated with high mortality rates, but the mechanisms underlying the initiation, expansion, and rupture of AAAs are not yet fully understood. We aimed to characterize the pathophysiology of AAAs and identify new genes associated with AAA initiation and progression.
View Article and Find Full Text PDFAbdominal aortic aneurysms (AAAs) are a degenerative aortic disease and associated with hallmarks of aging, such as mitophagy. Despite this, the exact associations among mitophagy, aging, and AAA progression remain unknown. In our study, gene expression analysis of human AAA tissue revealed downregulation of mitophagy pathways, mitochondrial structure, and function-related proteins.
View Article and Find Full Text PDFMajor depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are associated with an increased risk of cardiovascular diseases, including venous thromboembolism (VTE). The reasons for this are complex and include obesity, smoking, and use of hormones and psychotropic medications. Genetic studies have increasingly provided evidence of the shared genetic risk of psychiatric and cardiometabolic illnesses.
View Article and Find Full Text PDFBackground: Antithrombin, PC (protein C), and PS (protein S) are circulating natural anticoagulant proteins that regulate hemostasis and of which partial deficiencies are causes of venous thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS were limited by modest sample sizes or by being restricted to candidate genes. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-analyzed across ancestries the results from 10 genome-wide association studies of plasma levels of antithrombin, PC, PS free, and PS total.
View Article and Find Full Text PDFBackground: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.
Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches.
Background: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources.
View Article and Find Full Text PDFBackground: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes.
Objectives: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events.
Plasma cell-free DNA (cfDNA) is a surrogate marker of neutrophil extracellular traps (NETs) that contribute to immunothrombosis. There is growing interest about the mechanisms underlying NET formation and elevated cfDNA, but little is known about the factors involved. We aimed to identify genes involved in the regulation of cfDNA levels using data from the Genetic Analysis of Idiopathic Thrombophilia (GAIT-2) Project.
View Article and Find Full Text PDFMany individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk.
View Article and Find Full Text PDFIncreased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels, heart disease remains the leading cause of death worldwide. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease.
View Article and Find Full Text PDFUntreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyperthyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on hemostasis, coagulation, and fibrinolysis are unknown. In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we assessed causality of genetically predicted hypothyroidism ( = 134,641), normal-range thyrotropin (TSH; = 54,288) and free thyroxine (fT4) ( = 49,269), hyperthyroidism ( = 51,823), and thyroid peroxidase antibody positivity ( = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor [VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plasminogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium ( = 2583-120,246).
View Article and Find Full Text PDFBackground: Use of targeted exome-arrays with common, rare variants and functionally enriched variation has led to discovery of new genes contributing to population variation in risk factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the plasma product D-dimer are important components of the fibrinolytic system. There have been few large-scale genome-wide or exome-wide studies of PAI-1, tPA, and D-dimer.
View Article and Find Full Text PDF