Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions.
View Article and Find Full Text PDFInhibitors of human poly(ADP-ribose) polymerase (PARP) are considered as promising agents for treatment of cardiovascular, neurological, and other diseases accompanied by inflammation and oxidative stress. Previously, the ability of natural compounds 7-methylguanine (7mGua) and 8-hydroxy-7-methylguanine (8h7mGua) to suppress activity of the recombinant PARP protein was demonstrated. In the present work, we have investigated the possibility of PARP-inhibitory and cytoprotective action of 7mGua and 8h7mGua against the rat cardiomyoblast cultures (undifferentiated and differentiated H9c2).
View Article and Find Full Text PDF