The effects of pressure drop across cardiac valve cushion regions and endocardial wall strain in the early developmental stages of a teleost species heart are poorly understood. In the presented work, we utilize microscale particle image velocimetry (μPIV) flow measurements of developing medaka hearts from 3 to 14 dpf (n = 5 at each dpf) to quantify the pressure field and endocardial wall strain. Peak pressure drop at the atrioventricular canal (ΔPAVC) and outflow tract (ΔPOFT) show a steady increase with fish age progression.
View Article and Find Full Text PDFPerfluorooctanesulfonic acid (PFOS) is detected in estuarine environments, where salinity levels fluctuate regularly. We investigated the effects of salinity on the toxicity of PFOS in embryos and larvae of Cyprinodon variegatus. We crossed six PFOS treatments (0, 1-10,000 μg/L) with two salinities (10, 30 ppt).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are environmental contaminants of growing concern due to their potential negative effects on wildlife and human health. Per- and polyfluoroalkyl substances have been shown to alter immune function in various taxa, which could influence the outcomes of host-parasite interactions. To date, studies have focused on the effects of PFAS on host susceptibility to parasites, but no studies have addressed the effects of PFAS on parasites.
View Article and Find Full Text PDFLegacy polyfluoroalkyl substances (PFAS) [perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA)] are being replaced by various other fluorinated compounds, such as hexafluoropropylene oxide dimer acid (GenX). These alternatives are thought to be less bioaccumulative and, therefore, less toxic than legacy PFAS. Contaminant exposures occur concurrently with exposure to natural stressors, including the fungal pathogen ().
View Article and Find Full Text PDFThe Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) occur in the environment as mixtures, yet mixture toxicity remains poorly understood. Aqueous film-forming foams (AFFFs) are a common source of PFAS. Our objective was to examine chronic effects of a complex PFAS mixture on amphibian growth and development.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are synthetic chemicals in widespread use that have been shown to be toxic to wildlife and humans. Human serum albumin (HSA) is a known transport protein that binds PFAS at various sites, leading to bioaccumulation and long-term toxicity. In silico tools like quantitative structure-activity relationship (QSAR), read-across, and quantitative read-across structure-property relationship (q-RASPR) are proven techniques for modeling chemical toxicity based on experimental data which can be used to predict the toxicity of untested and new chemicals, while at the same time, help to identify the major features responsible for toxicity.
View Article and Find Full Text PDFThe exceptional thermal and chemical stability and the amphiphilicity of per- and polyfluoroalkyl substances (PFAS) have resulted in widespread use and subsequent contamination in environmental media and biota. Concerns surrounding toxicity have led to numerous animal-based toxicity studies. Due to the ubiquity of PFAS and the low parts per trillion (ppt) health advisory levels for drinking water, several contamination elimination protocols have been implemented.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are chemicals associated with adverse health effects. At aqueous film-forming foam sites, they occur as mixtures, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) commonly co-occurring in the highest concentrations. Although PFOS and PFHxS toxicities have been studied, few studies have tested their potential interaction.
View Article and Find Full Text PDFResearchers have developed numerous per- and polyfluoroalkyl substances (PFAS)-free aqueous film-forming foam (AFFF) formulations to replace PFAS-containing AFFF used for fire suppression. As part of the Department of Defense's Strategic Environmental Research and Development Program (SERDP), we examined the direct lethal effects of seven PFAS-free AFFF and a PFAS-containing AFFF on 14 aquatic species using a series of lethal concentration (LC50) tests. We assessed the LC10, LC50, and LC90 values using log-logistic and logit analyses.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are contaminants of concern due to their widespread occurrence in the environment, persistence, and potential to elicit a range of negative health effects. Per- and polyfluoroalkyl substances are regularly detected in surface waters, but their effects on many aquatic organisms are still poorly understood. Species with thyroid-dependent development, like amphibians, can be especially susceptible to PFAS effects on thyroid hormone regulation.
View Article and Find Full Text PDFNanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp.
View Article and Find Full Text PDFThe progression of cardiac gene expression-wall shear stress (WSS) interplay is critical to identifying developmental defects during cardiovascular morphogenesis. However, mechano-genetics from the embryonic to larval stages are poorly understood in vertebrates. We quantified peak WSS in the heart and tail vessels of Japanese medaka from 3 days post fertilization (dpf) to 14 dpf using micro-particle image velocimetry flow measurements, and in parallel analysed the expression of five cardiac genes (, , , , ).
View Article and Find Full Text PDFFollowing the Deepwater Horizon oil spill in April 2010, much research has been conducted on the cardiotoxic effects of oil on fish. Sensitive life history stages, such as the embryonic period, have been targeted to elucidate the effects of polycyclic aromatic hydrocarbons (PAHs) on the developing cardiovascular systems of fish. However, much of this research has focused on rapidly developing pelagic species, with little emphasis on estuarine species with longer embryological periods.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2021
Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development.
View Article and Find Full Text PDFBackground: Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a "natural experiment" for studying rapid genetic adaptation.
View Article and Find Full Text PDFThe resistance of pest species to chemical controls has vast ecological, economic, and societal costs. In most cases, resistance is only detected after spreading throughout an entire population. Detecting resistance in its incipient stages, by comparison, provides time to implement preventative strategies.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
June 2021
The aqueous extract of fallen leaves from Fridericia chica (Bonpl.) L.G.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are widespread, persistent environmental pollutants known to elicit a wide range of negative effects on wildlife species. There is scarce information regarding the toxicity of PFAS on amphibians, but amphibians may be highly susceptible because of their permeable skin and dependence on fresh water. Acute toxicity studies are a first step toward understanding responses to PFAS exposure, providing benchmarks for species-specific tolerances, informing ecological risk assessment (ERA), and designing chronic toxicity studies.
View Article and Find Full Text PDFNanoplastics are a growing environmental and public health concern. However, the toxic mechanisms of nanoplastics are poorly understood. Here, we evaluated the effects of spherical polystyrene nanoplastics on reproduction of Daphnia pulex and analyzed the proteome of whole animals followed by molecular and biochemical analyses for the development of an adverse outcome pathway (AOP) for these contaminants of emerging concern.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2021
Understanding the effects of oil exposure on early life stage fish species is critical to fully assessing the environmental impacts of oil spills. Oil released from the 2010 Deepwater Horizon spill reached habitats where estuarine fish routinely spawn. In addition, estuaries are highly dynamic environments, therefore, fish in these areas are routinely exposed to varying salinity and dissolved oxygen (DO) levels, each of which are known to modulate transcriptional responses.
View Article and Find Full Text PDFFollowing the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae.
View Article and Find Full Text PDFJ Toxicol Environ Health A
February 2021