Publications by authors named "Maria S Peresin"

With water access challenged, there is a need to develop efficient and sustainable alternatives for water purification. Here, cellulose nanofibrils (CNFs) isolated from three source materials (softwood, soybean hulls and oat straw) were compared for the generation of hydrogels beads, and compared as support and reducing agent for silver nanoparticles formation. The silver-functionalized hydrogel beads (Ag-CNFs) were characterized, and the surface energy and specific surface area were evaluated.

View Article and Find Full Text PDF

Sulfated cellulose nanocrystals' (CNCs') facile aqueous dispersibility enables producing films, fibers, and other materials using only water as a solvent but prevents using sulfated CNCs in applications that require water immersion. We report that modifying CNCs with 3-aminopropyl-triethoxysilane (APTES) via a simple, single-pot reaction scheme dramatically improves the hydrolytic stability of CNC films. The effects of APTES modification on CNCs' properties were studied using attenuated total reflectance Fourier transform infrared spectroscopy, atomic force and optical microscopy, thermogravimetric analysis, dynamic light scattering, and ultimate analysis.

View Article and Find Full Text PDF

In recent decades, the microcapsules of lipids, compound lipids, and essential oils, have found numerous potential practical applications in food, textiles, agricultural products, as well as pharmaceuticals. This article discusses the encapsulation of fat-soluble vitamins, essential oils, polyunsaturated fatty acids, and structured lipids. Consequently, the compiled information establishes the criteria to better select encapsulating agents as well as combinations of encapsulating agents best suited to the types of active ingredient to be encapsulated.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria causes over 435,000 deaths each year, mostly in Africa, so finding a better way to detect it is really important.
  • Scientists are trying to use paper-based tests with special materials to make it easier and cheaper to find malaria-causing parasites in mosquitoes.
  • This new method called PcsELISA is faster and needs less stuff to use, making it a great option for testing in areas where malaria is usually not found anymore.
View Article and Find Full Text PDF

Exploiting cellulose nanocrystals' high aspect ratio and tailorable surface for immunological biosensors has been hindered by the relatively limited research on using commonly available sulfated cellulose nanocrystals (CNCs) for antibody immobilization and by the low hydrolytic stability of dried assemblies produced from sulfated CNCs. Herein, we report a reaction scheme that enables both hydrolytic stability and antibody immobilization through 3-aminopropyl-triethoxysilane and glutaric anhydride chemistry. Immobilization was demonstrated using three model antibodies used in the detection of the cancer biomarkers: alpha-fetoprotein, prostate-specific antigen, and carcinoembryonic antigen.

View Article and Find Full Text PDF

Nanocellulose/polyethylenimine composites have attracted growing attention due to their versatility as new materials for application in different fields. Water remediation is one of the traditional applications of these composites and their investigation as adsorbents for single water pollutants is well established. However, most water resources such as rivers, lakes, and even oceans contain complex mixtures of pollutants.

View Article and Find Full Text PDF

Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-β-cyclodextrin (SBEβCD) was characterized, and the Hispolon-SBEβCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity.

View Article and Find Full Text PDF

Long-lasting insecticide-treated nets (LLINs) are widely distributed to communities where malaria is a major cause of mortality, especially to those under the age of 5 years-old. To protect people from this illness, LLINs provide physical and chemical barriers by containing insecticides within the matrix of the polymer fibers or on the surface. Synthetic polymers including polyethylene and polyester are common material choices for these nets, and pyrethroids, along with other additives, are the insecticides of choice for this application.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most common worldwide. Its treatment includes adjuvant chemotherapy with 5-fluorouracil (5FU) administered intravenously. 5FU is an antineoplastic drug of the fluoropyrimidines group, widely used in the treatment of solid tumors, mainly CRC.

View Article and Find Full Text PDF

Nano-porous aerogels are an advantageous approach to produce low-density materials with high surface area, particularly when using biobased materials. Frequently, most biobased aerogels are synthesized through a bottom-up approach, which requires high energy inputs to break and rebuild the raw materials, and for elimination of water. To curb this, this work focused on generating aerogels by a top-down approach through the delignification of a wood substrate while eliminating water by solvent exchange.

View Article and Find Full Text PDF

The objectives of this study were to utilize bio-oil-based epoxy resin in oriented strand board (OSB) production and investigate the effect of bio-oil substitution in epoxy resin as an adhesive for OSB production. Bio-oil was produced by the fast pyrolysis (FP) process using southern yellow pine ( spp.).

View Article and Find Full Text PDF

With the increasing need for bio-based materials developed by environmentally friendly procedures, this work shows a green method to develop shape-controlled structures from cellulose dissolving pulp coated by chitosan. This material was then tested to adsorb a common and widespread pollutant, 2,4-dichlorophenol under different pH conditions (5.5 and 9).

View Article and Find Full Text PDF

Silk fibroin (SF) is a protein polymer claimed to have outstanding potential for medical applications. However, because of the manufacturing process, materials from regenerated SF exhibit a higher percentage of amorphous structures. The amorphous structures cause the material to be water soluble and can significantly limit its applications in wet biological environments.

View Article and Find Full Text PDF

The interactions between films of bacterial nanocellulose (BNC) and B complex vitamins were studied using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Thin films of BNC were generated in situ by QCM-D, followed by real-time measurements of the vitamin adsorption. The desorption of vitamins was induced by rinsing the system using phosphate buffers at a pH of 2 and 6.

View Article and Find Full Text PDF

With increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water.

View Article and Find Full Text PDF

Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions.

View Article and Find Full Text PDF

Technical lignins are structurally heterogeneous and polydisperse. This work describes the use of a simple and green method for lignin fractionation, using different proportions of acetone (40 and 60%) in water. Lignins from three different sources (wheat straw organosolv lignin, wheat straw soda lignin and softwood kraft lignin) were used in this fractionation protocol.

View Article and Find Full Text PDF

A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmmdayatm were achieved at extremely high levels of relative humidity (RH95%).

View Article and Find Full Text PDF

Cationic (CatPECs) and anionic (AnPECs) polyelectrolyte complexes from xylan and chitosan were formed, characterized and adsorbed onto unbleached fibers for improving the papermaking properties. They were prepared at a level of 30% of neutralization charge ratio by modifying the order of addition of polyelectrolytes and the ionic strength (0.01N and 0.

View Article and Find Full Text PDF

In this work, polyelectrolyte complexes (PECs) were formed by adding polyacrylic acid (PAA) or 4-O-methylglucuronoxylan (Xyl) on poly(allylamine hydrochloride) (PAH) solutions, at different ionic strength and neutral pH. Turbidity curves, charge densities of the cationic complexes determined by polyelectrolyte titration method, and z-potential values showed clear differences between both complexes. Stirring favourably reverses the effects of sedimentation of Xyl/PAH complexes, as demonstrated by colloidal stability tests.

View Article and Find Full Text PDF

The effect of humidity on the morphological and thermomechanical properties of electrospun poly(vinyl alcohol) (PVA) fiber mats reinforced with cellulose nanocrystals (CNs) was investigated. Scanning electron microscopy (SEM) images revealed that the incorporation of CNs improved the morphological stability of the composite fibers even in high humidity environments. Thermal and mechanical properties of the electrospun fiber mats were studied by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and large deformation tensile tests under controlled humidity and temperatures.

View Article and Find Full Text PDF

We studied the use of cellulose nanocrystals (CNXs) obtained after acid hydrolysis of ramie cellulose fibers to reinforce poly(epsilon-caprolactone) (PCL) nanofibers. Chemical grafting with low-molecular-weight PCL diol onto the CNXs was carried out in an attempt to improve the interfacial adhesion with the fiber matrix. Grafting was confirmed via infrared spectroscopy and thermogravimetric analyses.

View Article and Find Full Text PDF

Cellulose nanocrystals (CN) were used to reinforce nanofibers in composite mats produced via electrospinning of poly(vinyl alcohol) (PVA) with two different concentrations of acetyl groups. Ultrathin cross-sections of the obtained nanocomposites consisted of fibers with maximum diameters of about 290 nm for all the CN loads investigated (from 0 to 15% CN loading). The electrospinning process did not affect the structure of the PVA polymer matrix, but its degree of crystallinity increased significantly together with a slight increase in the corresponding melting temperature.

View Article and Find Full Text PDF